求半徑為R的球的內(nèi)接圓柱的體積的最大值,且求出圓柱體積最大時(shí)的底面半徑.
【答案】分析:本題考查的知識(shí)點(diǎn)是棱柱、棱錐、棱臺(tái)的體積,為求出圓柱體積最大時(shí)的底面半徑,我們可以設(shè)圓柱體的底面半徑為r,進(jìn)而根據(jù)截面圓半徑、球半徑、球心距滿足勾股定理,我們可以用R與r表示出圓柱的高,進(jìn)而得到其體積的表達(dá)式,然后結(jié)合基本不等式,即可得到圓柱體積最大時(shí)的底面半徑的值.
解答:解:設(shè)圓柱體的底面半徑為r,
則球心到底面的高(即圓柱高的一半)為d,
則d=
則圓柱的高為h=2
則圓柱的體積V=πr2h≤π(r2+h)
當(dāng)且僅當(dāng)r2=h時(shí)V取最大值
即r2=2
即r=時(shí),
圓柱體積取最大值.
點(diǎn)評(píng):若球的截面圓半徑為r,球心距為d,球半徑為R,則球心距、截面圓半徑、球半徑構(gòu)成直角三角形,滿足勾股定理,即R2=r2+d2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求半徑為R的球的內(nèi)接圓柱的體積的最大值,且求出圓柱體積最大時(shí)的底面半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:名師指點(diǎn)學(xué)高中課程 數(shù)學(xué) 高二(下) 題型:038

求半徑為R的球的內(nèi)接正三棱錐的最大體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

求半徑為R的球的內(nèi)接正四棱柱側(cè)面積的最大值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求半徑為R的球的內(nèi)接正四棱柱側(cè)面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案