精英家教網 > 高中數學 > 題目詳情

袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(Ⅱ)現袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.

(1)
(2)

解析試題分析:解:(I)從五張卡片中任取兩張的所有可能情況有如下10種:
12,紅13,紅11,紅12,紅23,紅21,
22,紅31,紅32,藍12.
其中兩張卡片的顏色不同且標號之和小于4的有3種情況,故
所求的概率為.
(II)加入一張標號為0的綠色卡片后,從六張卡片中任取兩張,除上面的10種情況外,
多出5種情況:紅10,紅20,紅30,藍10,藍20,即共有15種情況,
其中顏色不同且標號之和小于4的有8種情況,
所以概率為.
考點:古典概型
點評:主要是考查了古典概型的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在一個口袋中裝有12個大小相同的黑球、白球和紅球。已知從袋中任意摸出2個球,至少得到一個黑球的概率是
求:(1)袋中黑球的個數;
(2)從袋中任意摸出3個球,至少得到2個黑球的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

.已知盒子中有4個紅球,2個白球,從中一次抓三個球
(1)求沒有抓到白球的概率;
(2)記抓到球中的紅球數為X ,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在進行一項擲骰子放球游戲中,規(guī)定:若擲出1點,甲盒中放一球;
若擲出2點或3點,乙盒中放一球;若擲出4點或5點或6點,丙盒中放一球,前后共擲3
次,設分別表示甲,乙,丙3個盒中的球數.
(1)求依次成公差大于0的等差數列的概率;
(2)記,求隨機變量的概率分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

高三年級有3名男生和1名女生為了報某所大學,事先進行了多方詳細咨詢,并根據自己的高考成績情況,最終估計這3名男生報此所大學的概率都是,這1名女生報此所大學的概率是.且這4人報此所大學互不影響。
(Ⅰ)求上述4名學生中報這所大學的人數中男生和女生人數相等的概率;
(Ⅱ)在報考某所大學的上述4名學生中,記為報這所大學的男生和女生人數的和,試求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

)袋中裝有大小相同的黑球、白球和紅球共10個。已知從袋中任意摸出1個球,得到黑球的概率是;從袋中任意摸出2個球,至少得到1個白球的概率是
(1)求袋中各色球的個數;
(2)從袋中任意摸出3個球,記得到白球的個數為ξ,求隨機變量ξ的分布列及數學期望Eξ和方差Dξ;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

袋子A、B中均裝有若干個大小相同的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p.
(1)  從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止。
①求恰好摸5次停止的概率;
②記5次之內(含5次)摸到紅球的次數為,求隨機變量的分布列及數學期望。
(2)若A、B兩個袋子中的球數之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求p的值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

將一顆質地均勻的正方體骰子(六個面的點數分別為1,2,3,4,5,6)先后拋擲兩次,將得到的點數分別記為.
(1)求直線與圓相切的概率;
(2)將的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

口袋中有大小、質地均相同的7個球,3個紅球,4個黑球,現在從中任取3個球。
(1)求取出的球顏色相同的概率;
(2)若取出的紅球數設為,求隨機變量的分布列和數學期望。

查看答案和解析>>

同步練習冊答案