精英家教網 > 高中數學 > 題目詳情
3.函數f(x)=loga(2x-3)+1(a>0,且a≠1)的圖象恒過定點P,則點P的坐標是(2,1).

分析 定點即為:點的坐標與a的取值無關,由對數函數的性質可知,只要令2x-3=1即可

解答 解:根據題意:令2x-3=1,
∴x=2,此時y=1,
∴定點坐標是(2,1).
故答案為:(2,1)

點評 本題主要考查對數函數的圖象和性質,在研究和應用時一定要注意一些細節(jié),如圖象的分布,關鍵線,關鍵點等

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

13.問題“求方程5x+12x=13x的解”有如下的思路:方程5x+12x=13x可變?yōu)椋?{\frac{5}{13}}$)x+(${\frac{12}{13}}$)x=1,考察函數f(x)=(${\frac{5}{13}}$)x+(${\frac{12}{13}}$)x可知f(2)=1,且函數f(x)在R上單調遞減,所以原方程有唯一解x=2.仿照此解法可得到不等式:lgx-4>2lg2-x的解集為(4,+∞)..

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.點P在以F為焦點的拋物線y2=4x上運動,點Q在直線x-y+5=0上運動,則||PF+|PQ|的最小值為( 。
A.4B.2$\sqrt{3}$C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.若α為銳角,且cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,則cosα=$\frac{3\sqrt{3}+4}{10}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.若橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,則$\frac{a}$=(  )
A.3B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知函數f(x)=cos(ωx+φ)的部分圖象如圖,則f(-$\frac{π}{6}$)+f(-$\frac{π}{12}$)+f(0)=( 。
A.$\frac{1-\sqrt{2}}{2}$B.$\frac{1+\sqrt{2}}{2}$C.$\frac{1-\sqrt{3}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.如圖,AB是圓O切于點B,過A的直線交圓O于C、D兩點,已知AB=6,CD=5
(1)求$\frac{BC}{BD}$的值;
(2)若∠BAC=60°,求圓O的半徑.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.若平面向量$\overrightarrow b$與向量$\overrightarrow a=(2,-1)$的夾角是180°,且$|\overrightarrow b|=3\sqrt{5}$,則$\overrightarrow b$=( 。
A.(-3,6)B.(3,-6)C.(-6,3)D.(6,-3)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.隨意安排甲、乙、丙3人在3天假期中值班,每人值班1天,則:
(1)這3人的值班順序共有多少種不同的排列方法?
(2)這3人的值班順序中,甲在乙之前的排法有多少種?
(3)甲排在乙之前的概率是多少?

查看答案和解析>>

同步練習冊答案