19.若命題“x∈{x|x2-5x+4>0}”是假命題,則x的取值范圍是1≤x≤4.

分析 由題意可得對(duì)于任意x,不等式x2-5x+4>0不成立,即x2-5x+4≤0成立.求解不等式得答案.

解答 解:命題“x∈{x|x2-5x+4>0}”是假命題,
說(shuō)明對(duì)于任意x,不等式x2-5x+4>0不成立,
即x2-5x+4≤0成立.
解得1≤x≤4.
∴x的取值范圍是1≤x≤4.
故答案為:1≤x≤4.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查一元二次不等式的解法,理解題意是關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖所示,已知底面ABCD是正方形的四棱柱ABCD-A1B1C1D1,C1C=C1D,且∠C1CB=C1CD,線段AC與BD的交點(diǎn)為O.
(1)求證:C1O⊥平面ABCD;
(2)若C1O=CO,設(shè)點(diǎn)E在線段AD上,且滿足$\overrightarrow{AE}$=λ$\overrightarrow{ED}$,當(dāng)λ為何值時(shí),二面角D1-OE-A的余弦值為$\frac{\sqrt{6}}{6}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知f(x)是定義在R上的函數(shù),且滿足①f(4)=0;②曲線y=f(x+1)關(guān)于點(diǎn)(-1,0)對(duì)稱;③當(dāng)x∈(-4,0)時(shí)f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m+1),若y=f(x)在x∈[-4,4]上有5個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍為( 。
A.[-3e-4,1)B.[-3e-4,1)∪{-e-2}C.[0,1)∪{-e-2}D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知實(shí)數(shù)x,y滿足的約束條件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$,表示的平面區(qū)域?yàn)镈,若存在點(diǎn)P(x,y)∈D,使x2+y2≥m成立,則實(shí)數(shù)m的最大值為$\frac{181}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,且圖象上相鄰最高點(diǎn)的距離為π.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{12}$個(gè)單位后,得到y(tǒng)=g(x)的圖象,則g(x)的單調(diào)遞減區(qū)間為.
A.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZB.[kπ-$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z
C.[kπ-$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈ZD.[kπ+$\frac{5π}{12}$,kπ-$\frac{11π}{12}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$α∈(0,\frac{π}{2})$,且$2cos2α=cos(α-\frac{π}{4})$,則sin2α的值為( 。
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$-\frac{7}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)$\overrightarrow{a}$=(cosx,-1),$\overrightarrow$=(sinx-cosx,-1),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{1}{2}$
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的對(duì)稱軸方程和對(duì)稱中心的坐標(biāo);
(3)求不等式f(x)≥$\frac{1}{2}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過(guò)點(diǎn)(0,-2),F(xiàn)1,F(xiàn)2分別是其左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P是橢圓上一點(diǎn),PF1⊥x軸,且△OPF1的面積為$\sqrt{2}$,
(1)求橢圓E的離心率和方程;
(2)設(shè)A,B是橢圓上兩動(dòng)點(diǎn),若直線AB的斜率為$-\frac{1}{4}$,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知$|{\overrightarrow{TM}}|=2$,$|{\overrightarrow{TN}}|=4$,且$\overrightarrow{TM}•\overrightarrow{TN}=\frac{5}{2}$,若點(diǎn)P滿足$|{\overrightarrow{TM}+\overrightarrow{TN}-\overrightarrow{TP}}|=2$,則$|{\overrightarrow{TP}}|$的取值范圍為[3,7].

查看答案和解析>>

同步練習(xí)冊(cè)答案