如圖,四面體ABCD中,O、E分別是BD、BC的中點

(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的余弦值;
(III)求點E到平面ACD的距離。
(I)證明:見解析;(II)(III)點E到平面ACD的距離為

試題分析:(I)欲證AO⊥平面BCD,根據(jù)直線與平面垂直的判定定理可知只需證AO與平面BCD內兩相交直線垂直,而CO⊥BD,AO⊥OC,BD∩OC=O,滿足定理;
(II)以O為原點,OB為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,異面直線AB與CD的向量坐標,求出兩向量的夾角即可;
(III)求出平面ACD的法向量,點E到平面ACD的距離轉化成向量EC在平面ACD法向量上的投影即可.
解:(I)證明:連結OC


中,由已知可得
    
   平面
(II)解:取AC的中點M,連結OM、ME、OE,由E為BC的中點知
直線OE與EM所成的銳角就是異面直線AB與CD所成的角
中,

是直角斜邊AC上的中線,  
(III)解:設點E到平面ACD的距離為
   在中,
   而
 點E到平面ACD的距離為
點評:解決該試題的關鍵是能對于空間中點線面的位置關系的研究,既可以運用幾何方法來證明,也可以建立直角坐標系,借助于向量來得到。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面為平行四邊形,平面在棱上.

(I)當時,求證平面
(II)當二面角的大小為時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,在直三棱柱(側棱垂直于底面的棱柱)中, , , , ,點的中點.

(Ⅰ) 求證:∥平面;
(Ⅱ)求AC1與平面CC1B1B所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分,每一問6分)
如圖,弧是半徑為的半圓,為直徑,點為弧的中點,點和點為線段的三等分點,線段與弧交于點,且,平面外一點滿足平面,。

⑴證明:;
⑵ 將(及其內部)繞所在直線旋轉一周形成一幾何體,求該幾何體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線m、n及平面,其中m∥n,那么在平面內到兩條直線m、n距離相等的點的集合可能是:(1)一條直線;(2)一個平面;(3)一個點;(4)空集.其中正確的是__________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列敘述中錯誤的是(    )
A.若,則;
B.三點確定一個平面;
C.若直線,則直線能夠確定一個平面;
D.若,則.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是空間三條直線,是空間兩個平面,則下列命題中,逆命題不正確的是(   )
A.當時,若,則
B.當時,若,則
C.當內的射影時,若,則
D.當時,若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間,異面直線,所成的角為,且=(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在三棱錐中,,則直線所成角的大小是(  )
A.30ºB.45ºC.60ºD.90º

查看答案和解析>>

同步練習冊答案