已知函數(shù)f(x)=sinx,對于滿足0<x1<x2<π的任意x1,x2,給出下列結(jié)論:
①(x2-x1)[f(x2)-f(x1)]>0;②x2f(x1)>x1f(x2);③f(x2)-f(x1)<x2-x1;④
f(x1)+f(x2)
2
<f(
x1+x2
2
)
,
其中正確結(jié)論的個數(shù)為
 
分析:先畫出函數(shù)f(x)的圖象,結(jié)合圖象判斷出函數(shù)的單調(diào)性,判斷出①錯;先賦予②中不等式的幾何意義,結(jié)合圖象判斷出其是錯誤的;同樣先賦予③幾何意義,結(jié)合圖象判斷出其是錯誤的;判斷出函數(shù)圖象的趨勢,得到函數(shù)值的平均值與自變量的平均值的函數(shù)值的大。
解答:解:∵f(x)=sinx在[0,π]上的圖象為
精英家教網(wǎng)
由圖象知,f(x)在[0,
π
2
]上單調(diào)遞增,在[
π
2
,π
]單調(diào)遞減,故①錯
對于②,x2f(x1)>x1f(x2)即為
f(x1)
x1
f(x2)
x2
即表示兩個點(x1,f(x1));(x2,f(x2))與原點連線的斜率,由圖知,兩個斜率大小不確定,故②錯
對于③f(x2)-f(x1)<x2-x1
f(x2)-f(x1)
x2-x1
<0
即表示兩個點(x1,f(x1));(x2,f(x2))連線的斜率,由圖知,斜率的符號不確定.故③錯
對于④,因為由圖知,圖象呈上凸趨勢,所以有
f(x1)+f(x2)
2
<f(
x1+x2
2
)
,故④對
故答案為1
點評:解決一些基本函數(shù)的性質(zhì)問題時,常先畫出函數(shù)的圖象,結(jié)合圖象判斷出函數(shù)的性質(zhì).即常數(shù)形結(jié)合解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數(shù)m的取值范圍;
(3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當(dāng)?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-blnx在(1,2]是增函數(shù),g(x)=x-b
x
在(0,1)為減函數(shù).
(1)求b的值;
(2)設(shè)函數(shù)φ(x)=2ax-
1
x2
是區(qū)間(0,1]上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案