橢圓的極坐標(biāo)方程為,則它在短軸上的兩個(gè)頂點(diǎn)的極坐標(biāo)是( )
A.(3,0),(1,π)
B.(,),(,
C.(2,),(2,
D.(),(
【答案】分析:利用圓錐曲線統(tǒng)一的極坐標(biāo)方程,求出圓錐曲線的短軸上的兩個(gè)頂點(diǎn)位置,從而確定它們的極坐標(biāo).
解答:解:將原極坐標(biāo)方程為,化成:
極坐標(biāo)方程為ρ=,
對(duì)照?qǐng)A錐曲線統(tǒng)一的極坐標(biāo)方程得:
e=,a=2,b=,c=1.
∴它在短軸上的兩個(gè)頂點(diǎn)的極坐標(biāo)
(2,),(2,).
故選C.
點(diǎn)評(píng):本題主要考查了圓錐曲線的極坐標(biāo)方程,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的極坐標(biāo)方程為ρ=
3
2-cosθ
,則它在短軸上的兩個(gè)頂點(diǎn)的極坐標(biāo)是( 。
A、(3,0),(1,π)
B、(
3
π
2
),(
3
,
2
C、(2,
π
3
),(2,
3
D、(
7
arctg
3
2
),(
7
,2π-arctg
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

橢圓的極坐標(biāo)方程為數(shù)學(xué)公式,則它在短軸上的兩個(gè)頂點(diǎn)的極坐標(biāo)是


  1. A.
    (3,0),(1,π)
  2. B.
    數(shù)學(xué)公式,數(shù)學(xué)公式),(數(shù)學(xué)公式,數(shù)學(xué)公式
  3. C.
    (2,數(shù)學(xué)公式),(2,數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式,數(shù)學(xué)公式),(數(shù)學(xué)公式,數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的極坐標(biāo)方程為ρ=
3
2-cosθ
,則它在短軸上的兩個(gè)頂點(diǎn)的極坐標(biāo)是(  )
A.(3,0),(1,π)
B.(
3
,
π
2
),(
3
,
2
C.(2,
π
3
),(2,
3
D.(
7
,arctg
3
2
),(
7
2π-arctg
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案