兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭孅c(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類,圖中的實(shí)心點(diǎn)的個(gè)數(shù)1、5、12、22、…,被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作a1=1,第2個(gè)五角形數(shù)記作a2=5,第3個(gè)五角形數(shù)記作a3=12,第4個(gè)五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,則a5=
 
,若an=92,則n=
 

考點(diǎn):歸納推理
專題:計(jì)算題,推理和證明
分析:仔細(xì)觀察法各個(gè)圖形中實(shí)心點(diǎn)的個(gè)數(shù),找到個(gè)數(shù)之間的通項(xiàng)公式,再求第5個(gè)五角星的中實(shí)心點(diǎn)的個(gè)數(shù)及an=92時(shí),n的值即可.
解答: 解:第一個(gè)有1個(gè)實(shí)心點(diǎn),
第二個(gè)有1+1×3+1=5個(gè)實(shí)心點(diǎn),
第三個(gè)有1+1×3+1+2×3+1=12個(gè)實(shí)心點(diǎn),
第四個(gè)有1+1×3+1+2×3+1+3×3+1=22個(gè)實(shí)心點(diǎn),

第n個(gè)有1+1×3+1+2×3+1+3×3+1+…+3(n-1)+1=
3n(n-1)
2
+n=
3n2-n
2
個(gè)實(shí)心點(diǎn),即an=
3n2-n
2

當(dāng)
3n2-n
2
=92時(shí),n=8.
故答案為:35; 8
點(diǎn)評(píng):本題考查了圖形的變化類問(wèn)題,解題的關(guān)鍵是仔細(xì)觀察每個(gè)圖形并從中找到通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在淘寶網(wǎng)上,某店鋪專賣孝感某種特產(chǎn).由以往的經(jīng)驗(yàn)表明,不考慮其他因素,該特產(chǎn)每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克,1<x≤5)滿足:當(dāng)1<x≤3時(shí),y=a(x-3)2+
b
x-1
,(a,b為常數(shù));當(dāng)3<x≤5時(shí),y=-70x+490.已知當(dāng)銷售價(jià)格為2元/千克時(shí),每日可售出該特產(chǎn)600千克;當(dāng)銷售價(jià)格為3元/千克時(shí),每日可售出150千克.
(1)求a,b的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該特產(chǎn)的銷售成本為1元/千克,試確定銷售價(jià)格x的值,使店鋪每日銷售該特產(chǎn)所獲利潤(rùn)f(x)最大(x精確到0.1元/千克).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在四棱錐P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=
1
2
BC,點(diǎn)E、F分別是棱PB、邊CD的中點(diǎn),求證:EF∥面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為(-2,0),離心率e=
6
3

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),T為直線x=-3上一點(diǎn),過(guò)F作TF的垂線交橢圓C于P,Q兩點(diǎn),當(dāng)四邊形OPTQ是平行四邊形時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位用分期付款方式為職工購(gòu)買40套住房,共需1150萬(wàn)元,購(gòu)買當(dāng)天先付150萬(wàn)元,以后每月這一天都交付50萬(wàn)元,并加付欠款利息,月利率為1%.若交付150萬(wàn)元后的第一個(gè)月算分期付款的第一個(gè)月,求分期付款的第10個(gè)月應(yīng)付多少錢?最后一次應(yīng)付多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差d≠0,它的前n項(xiàng)和為Sn,若S5=70,且a2,a7,a22成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
Sn
}
的前n項(xiàng)和為Tn,求證:Tn
3
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.
(Ⅱ)將f(x)的圖象向右平移
π
12
個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象;再將得到函數(shù)g(x)的圖象向下平移1個(gè)單位,同時(shí)將周期擴(kuò)大1倍,得到函數(shù)h(x)的圖象,分別寫出函數(shù)g(x)與h(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=-
1
3
x3+
1
2
x2+2ax.
(1)若f(x)在(
2
3
,+∞)上是單調(diào)減函數(shù),求實(shí)數(shù)a的取值范圍.
(2)當(dāng)0<a<2時(shí),f(x)在[1,4]上的最小值為-
16
3
,求f(x)在該區(qū)間的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( 。
A、f(x)=x
1
2
B、f(x)=x3
C、f(x)=(
1
2
)x
D、f(x)=3x

查看答案和解析>>

同步練習(xí)冊(cè)答案