在淘寶網(wǎng)上,某店鋪專賣孝感某種特產(chǎn).由以往的經(jīng)驗(yàn)表明,不考慮其他因素,該特產(chǎn)每日的銷售量y(單位:千克)與銷售價格x(單位:元/千克,1<x≤5)滿足:當(dāng)1<x≤3時,y=a(x-3)2+
b
x-1
,(a,b為常數(shù));當(dāng)3<x≤5時,y=-70x+490.已知當(dāng)銷售價格為2元/千克時,每日可售出該特產(chǎn)600千克;當(dāng)銷售價格為3元/千克時,每日可售出150千克.
(1)求a,b的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該特產(chǎn)的銷售成本為1元/千克,試確定銷售價格x的值,使店鋪每日銷售該特產(chǎn)所獲利潤f(x)最大(x精確到0.1元/千克).
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:計算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,代入數(shù)據(jù)求出a,b;從而求出函數(shù)的解析式;
(2)由于是分段函數(shù),討論其各部分的最大值,從而求函數(shù)的最大值點(diǎn).
解答: 解:(1)由題意:
x=2時y=600,∴a+b=600,
又∵x=3時y=150,∴b=300.
y=
300(x-3)2+
300
x-1
,1<x≤3
-70x+490,3<x≤5

(2)由題意:
f(x)=y(x-1)=
300(x-3)2(x-1)+300,1<x≤3
(-70x+490)(x-1),3<x≤5
,
當(dāng)1<x≤3時,
f(x)=300(x-3)2(x-1)+300=300(x3-7x2+15x-8),
f'(x)=300(3x2-14x+15)=(3x-5)(x-3),
x=
5
3
時有最大值
5900
9
. 
當(dāng)3<x≤5時,
f(x)=(-70x+490)(x-1),
∴x=4時有最大值630.
∵630<
5900
9

∴當(dāng)x=
5
3
時f(x)有最大值
5900
9
,
即當(dāng)銷售價格為1.7元的值,使店鋪所獲利潤最大.
點(diǎn)評:本題考查了實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力,同時考查了分段函數(shù)的最大值的求法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=lnx-8x2,則此函數(shù)在區(qū)間(
1
4
,
1
2
)和((1,+∞)內(nèi)分別(  )
A、單調(diào)遞增,單調(diào)遞減
B、單調(diào)遞增,單調(diào)遞增
C、單調(diào)遞減,單調(diào)遞增
D、單調(diào)遞減,單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={m-2,-3},b={2m-1,m-3},若A∩B={-3},則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
2x2
x+1
,求f(x)在x∈[0,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-
3
2
x2的最大值不大于
1
6

(1)求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x∈[
1
4
1
2
]時.f(x)≥
1
8
,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)若x=1是f(x)=tlnx-
x2
1+x
的一個極值點(diǎn),求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:若a1a2…an=1,ai∈R+,n∈N*,則
n
i=1
ai2
1+ai
n
2
;
(Ⅲ)證明:若a1a2…an≥1,λ∈R+,ai∈R+,n∈N*,則
n
i=1
ai2
λ+ai
n
λ+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中E,F(xiàn),G,H分別為AA1,CC1,C1D1,D1A1的中點(diǎn),判斷EFGH的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x+7
x+2

(1)求函數(shù)的單調(diào)區(qū)間
(2)當(dāng)m∈(-2,2)時,有f(-2m+3)>f(m2),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題,他們在沙灘上畫點(diǎn)或用小石子來表示數(shù),按照點(diǎn)或小石子能排列的形狀對數(shù)進(jìn)行分類,圖中的實(shí)心點(diǎn)的個數(shù)1、5、12、22、…,被稱為五角形數(shù),其中第1個五角形數(shù)記作a1=1,第2個五角形數(shù)記作a2=5,第3個五角形數(shù)記作a3=12,第4個五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,則a5=
 
,若an=92,則n=
 

查看答案和解析>>

同步練習(xí)冊答案