分析 (1)先求出f′(x)=x2-x+2,f''(x)=2x-1,由f''(x)=2x-1=0,解得x=$\frac{1}{2}$,再由f($\frac{1}{2}$)=1,能求出$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$的對稱中心.
(2)由$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$的對稱中心為($\frac{1}{2},1$),得到f(x)+f(1-x)=2,由此能求出$f({\frac{1}{2017}})+f({\frac{2}{2017}})+f({\frac{3}{2017}})+…+f({\frac{2016}{2017}})$.
解答 解:(1)∵$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$,
∴f′(x)=x2-x+2,f''(x)=2x-1,
由f''(x)=2x-1=0,解得x=$\frac{1}{2}$,
∵f($\frac{1}{2}$)=1,∴由題設(shè)知$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$的對稱中心為($\frac{1}{2},1$).
(2)∵$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x+\frac{1}{12}$的對稱中心為($\frac{1}{2},1$),
∴$f(\frac{1}{2}+x)+f(\frac{1}{2}-x)=2$,即f(x)+f(1-x)=2,
∴$f({\frac{1}{2017}})+f({\frac{2}{2017}})+f({\frac{3}{2017}})+…+f({\frac{2016}{2017}})$=$\frac{1}{2}×$2×2016=2016.
點評 本題考查函數(shù)的對稱中心的求法,考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{1}{4},\frac{5}{8}}]$ | B. | $[{\frac{1}{2},\frac{5}{4}}]$ | C. | $({0,\frac{1}{2}}]$ | D. | $({0,\frac{1}{4}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拼圖數(shù)x/個 | 10 | 20 | 30 | 40 | 50 |
加工時間y/分鐘 | 62 | 68 | 75 | 81 | 89 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}+\sqrt{10}}{6}$ | B. | $\frac{2\sqrt{2}+\sqrt{10}}{6}$ | C. | $\frac{\sqrt{2}-\sqrt{10}}{6}$ | D. | $\frac{2\sqrt{2}-\sqrt{10}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | -2 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | -1 | 0 | 1 | 2 | 3 |
ex | 0.37 | 1 | 2.72 | 7.39 | 20.08 |
x+3 | 2 | 3 | 4 | 5 | 6 |
A. | (-1,0) | B. | (0,1) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com