A. | [-1,+∞) | B. | (-∞,2] | C. | (-∞,-1)和(1,2) | D. | [2,+∞) |
分析 由切線方程y-y0=(x0-2)(x02-1)(x-x0),可知任一點(diǎn)的導(dǎo)數(shù)為f′(x)=(x-2)(x2-1),然后由f′(x)<0,可求單調(diào)遞減區(qū)間.
解答 解:因?yàn)楹瘮?shù)f(x),(x∈R)上任一點(diǎn)(x0y0)的切線方程為y-y0=(x0-2)(x02-1)(x-x0),
即函數(shù)在任一點(diǎn)(x0y0)的切線斜率為k=(x0-2)(x02-1),
即知任一點(diǎn)的導(dǎo)數(shù)為f′(x)=(x-2)(x2-1).
由f′(x)=(x-2)(x2-1)<0,得x<-1或1<x<2,
即函數(shù)f(x)的單調(diào)遞減區(qū)間是(-∞,-1)和(1,2).
故選C.
點(diǎn)評(píng) 本題的考點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,先由切線方程得到切線斜率,進(jìn)而得到函數(shù)的導(dǎo)數(shù),然后解導(dǎo)數(shù)不等式,是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 22017-1 | B. | 22017-2 | C. | $\frac{1}{3}({{4^{2017}}-1})$ | D. | $\frac{2}{3}({{4^{2017}}-1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com