【題目】為了引導(dǎo)居民合理用電,國家決定實行合理的階梯電價,居民用電原則上以住宅為單位(一套住宅為一戶).
階梯級別 | 第一階梯 | 第二階梯 | 第三階梯 |
月用電范圍(度) | (0,210] | (210,400] |
某市隨機抽取10戶同一個月的用電情況,得到統(tǒng)計表如下:
居民用電戶編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用電量(度) | 53 | 86 | 90 | 124 | 132 | 200 | 215 | 225 | 300 | 410 |
若規(guī)定第一階梯電價每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計算A居民用電戶用電410度時應(yīng)電費多少元?
現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;
以表中抽到的10戶作為樣本估計全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式.
(1)當(dāng)時,解不等式;
(2)如果不等式的解集為空集,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩車由同一起點同時出發(fā),并沿同一路線(假定為直線)行駛.甲車、乙車的速度曲線分別為V甲和V乙(如圖所示).那么對于圖中給定的t0和t1 , 下列判斷中一定正確的是( )
A.在t1時刻,甲車在乙車前面
B.t1時刻后,甲車在乙車后面
C.在t0時刻,兩車的位置相同
D.t0時刻后,乙車在甲車前面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函數(shù)f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)證明:對一切x∈(0,+∞),都有l(wèi)nx> ﹣ 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )??
B.y=2sin(2x+ )??
C.y=2sin( ﹣ )??
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品x件的總成本C(x)=1000+x2(萬元),已知產(chǎn)品單價P(萬元)與產(chǎn)品件數(shù)x滿足:P2= ,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元.
(1)設(shè)產(chǎn)量為x件時,總利潤為L(x)(萬元),求L(x)的解析式;
(2)產(chǎn)量x定為多少時總利潤L(x)(萬元)最大?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,分別求函數(shù)的最小值和的最大值,并證明當(dāng)時, 成立;
(3)令,當(dāng)時,判斷函數(shù)有幾個不同的零點并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,
①求曲線在點處的切線方程;
②求函數(shù)在區(qū)間上的值域.
(2)對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點P、Q分別在直線3x﹣y+5=0和3x﹣y﹣13=0上運動,線段PQ中點為M(x0 , y0),且x0+y0>4,則 的取值范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com