6.已知P(-4,3)是角α的終邊上的一點(diǎn),求sinα,cosα,tanα

分析 直接利用任意角的三角函數(shù),求解即可.

解答 解:角α的終邊為點(diǎn)P(-4,3),所以x=-4,y=3,r=5,
sinα=$\frac{y}{r}$=$\frac{3}{5}$.cosα=$\frac{x}{r}$=-$\frac{4}{5}$,
tanα=$\frac{y}{x}=-\frac{3}{4}$.

點(diǎn)評(píng) 本題考查任意角的三角函數(shù)的定義,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,平面PAB⊥平面ABCD,AD∥BC,PA⊥AB,CD⊥AD,BC=CD=$\frac{1}{2}$AD,E為AD的中點(diǎn).
(Ⅰ)求證:PA⊥CD;
(Ⅱ)求證:平面PBD⊥平面PAB;
(Ⅲ)在平面PAB內(nèi)是否存在M,使得直線CM∥平面PBE,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.(a+bi)(a-bi)(-a+bi)(-a-bi)等于(  )
A.(a2+b22B.(a2-b22C.a2+b2D.a2-b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知總體中各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,15,18,20(a,b∈N*),且總體的中位數(shù)為10,若要使該總體的方差最小,則a,b的取值分別是( 。
A.9,11B.10,10C.8,10D.10,11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,在正方體ABCD-A1B1C1D1中,AB=3$\sqrt{3}$,點(diǎn)E,F(xiàn)在線段DB1上,且DE=EF=FB1,點(diǎn)M是正方體表面上的一動(dòng)點(diǎn),點(diǎn)P,Q是空間兩動(dòng)點(diǎn),若$\frac{|PE|}{|PF|}$=$\frac{|QE|}{|QF|}$=2且|PQ|=4,則$\overrightarrow{MP}$•$\overrightarrow{MQ}$的最小值為-$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.直線l過(guò)點(diǎn)P(2,1),與x軸,y軸的正半軸分布交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)當(dāng)直線l的斜率k=-1時(shí),求△AOB的外接圓的面積;
(2)當(dāng)△AOB的面積最小時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=$\frac{1}{2}$(x-1)2+a的定義域和值域都是[1,b](b>1),則a+b的值等于( 。
A.-2B.2C.4D.2或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知x∈N,則方程x2+x-2=0的解集用列舉法可表示為{1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若復(fù)數(shù)z滿足zi=2-3i(i是虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A.-3-2iB.-3+2iC.2+3iD.3-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案