|
|
已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集為M.
(1)求M;
(2)當(dāng)a,b∈M時,證明:2|a+b|<|4+ab|.
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)全集U={x∈Z||x|<3},A={x∈Z|x(x-3)<0},B={-2,-1,2},則A∪(CUB)=
|
[ ] |
A. |
{1}
|
B. |
{2}
|
C. |
{0,1,2}
|
D. |
{1,2}
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F(xiàn),G分別是PA,PB,BC的中點(diǎn).
(Ⅰ)求平面EFG與平面ABCD所成銳二面角的大;
(Ⅱ)若M為線段AB上靠近A的一個動點(diǎn),問當(dāng)AM長度等于多少時,直線MF與平面EFG所成角的正弦值等于?
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內(nèi)切圓周長為π,A,B兩點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),則|y1-y2|值為
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F(xiàn),G分別是PD,PC,BC的中點(diǎn).
(Ⅰ)求平面EFG⊥平面PAD;
(Ⅱ)若M是線段CD上一點(diǎn),求三棱錐M-EFG的體積.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-<φ<)的部分圖象如圖所示,則y=f(x)的圖象可由函數(shù)y=sinx的圖象(縱坐標(biāo)不變)作下述變換得到
|
[ ] |
A. |
先把各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向右平移個單位
|
B. |
先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向右平移個單位
|
C. |
先把各點(diǎn)的橫坐標(biāo)縮短到原來的倍,再向右平移個單位
|
D. |
先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向左平移個單位
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知定義在R上的函數(shù)y=f(x)滿足f(x+2)=f(x)當(dāng)-1<x≤1時,f(x)=x3,若函數(shù)g(x)=f(x)-loga|x|至少有6個零點(diǎn),則a的取值范圍是
|
[ ] |
A. |
(1,5)
|
B. |
(0,
|
C. |
(0,
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)F1,F(xiàn)2是雙曲線的兩個焦點(diǎn),過點(diǎn)F2作與x軸垂直的直線和雙曲線的一個交點(diǎn)為A,滿足||=||,則雙曲線的離心率為
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
不確定,與m取值有關(guān)
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖所示的是一個算法的流程圖,已知a1=3,輸出的結(jié)果為7,則a2的值是
|
[ ] |
A. |
9
|
B. |
10
|
C. |
11
|
D. |
12
|
|
|
查看答案和解析>>