(1) 已知?jiǎng)狱c(diǎn)到點(diǎn)與到直線的距離相等,求點(diǎn)的軌跡的方程;
(2) 若正方形的三個(gè)頂點(diǎn),,()在(1)中的曲線上,設(shè)的斜率為,,求關(guān)于的函數(shù)解析式
(3) 求(2)中正方形面積的最小值.
(1) (2)(3) 的最小值為 
 (1) 由題設(shè)可得動(dòng)點(diǎn)的軌跡方程為.       ………………4分
(2) 由(1),可設(shè)直線的方程為:,
得,
易知、為該方程的兩個(gè)根,故有,得,
從而得,  ……………………6分
類(lèi)似地,可設(shè)直線的方程為:
從而得,                ……………………8分
,得,
解得,                                         
.     ……………………10分
(3) 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231343181341504.gif" style="vertical-align:middle;" />,……………………12分
所以,即的最小值為,
當(dāng)且僅當(dāng)時(shí)取得最小值.……………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知拋物線,直線兩點(diǎn),是線段的中點(diǎn),過(guò)軸的垂線交于點(diǎn)
(Ⅰ)證明:拋物線在點(diǎn)處的切線與平行;
(Ⅱ)是否存在實(shí)數(shù)使,若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知線段AB過(guò)軸上一點(diǎn),斜率為,兩端點(diǎn)A,B到軸距離之差為,
(1)求以O(shè)為頂點(diǎn),軸為對(duì)稱(chēng)軸,且過(guò)A,B兩點(diǎn)的拋物線方程;
(2)設(shè)Q為拋物線準(zhǔn)線上任意一點(diǎn),過(guò)Q作拋物線的兩條切線,切點(diǎn)分別為M,N,求證:直線MN過(guò)一定點(diǎn);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求過(guò)點(diǎn)的直線,使它與拋物線僅有一個(gè)交點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為拋物線上一動(dòng)點(diǎn),F為拋物線的焦點(diǎn),定點(diǎn),則的最小值為(      )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過(guò)其上一點(diǎn)的切線方程為為常數(shù)).
(I)求拋物線方程;
(II)斜率為的直線PA與拋物線的另一交點(diǎn)為A,斜率為的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿(mǎn)足,求證線段PM的中點(diǎn)在y軸上;
(III)在(II)的條件下,當(dāng)時(shí),若P的坐標(biāo)為(1,-1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)圓錐曲線焦點(diǎn)的直線與此圓錐曲線交于P1、P2兩點(diǎn),以P1P2為直徑的圓與此焦點(diǎn)對(duì)應(yīng)的準(zhǔn)線相切,則此圓錐曲線是(   )
A.橢圓B.雙曲線C.拋物線D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線上的點(diǎn)到定點(diǎn)和到定直線的距離相等,
                                         (   )
A.;B.C.;D..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)拋物線上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是
A. 4B. 6C. 8D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案