考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:由題意可得y=ax與y=logax互為反函數(shù),故問題等價(jià)于ax>x(a>1)在區(qū)間(0,+∞)上恒成立,利用導(dǎo)數(shù)進(jìn)行解決.
解答:
解:當(dāng)a>1,由題意可得y=a
x與y=log
ax互為反函數(shù),且關(guān)于直線y=x對(duì)稱,
故問題等價(jià)于a
x>x(a>1)在區(qū)間(0,+∞)上恒成立.
構(gòu)造函數(shù)f(x)=a
x-x,則f′(x)=a
xlna-1,
由f′(x)=0,得x=log
a(log
ae),
x>log
a(log
ae)時(shí),f′(x)>0,f(x)遞增;
0<x<log
a(log
ae),f′(x)<0,f(x)遞減.
則x=log
a(log
ae)時(shí),函數(shù)f(x)取到最小值,
故有
aloga(logae)-log
a(log
ae)>0,解得a>
e.
故答案為:(
e,+∞).
點(diǎn)評(píng):本題考查恒成立問題關(guān)鍵是將問題等價(jià)轉(zhuǎn)化,從而利用導(dǎo)數(shù)求函數(shù)的最值求出參數(shù)的范圍.