13.通過市場調(diào)查,得到某種產(chǎn)品的資金投入x(萬元)與獲得的利潤y(萬元)的數(shù)據(jù),如表所示:
資金投入x23456
利潤y23569
(Ⅰ)畫出數(shù)據(jù)對應(yīng)的散點圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程$\stackrel{∧}{y}$=bx+a;
(Ⅲ)現(xiàn)投入資金10萬元,求獲得利潤的估計值為多少萬元?
(參考公式:$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}(x-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-b\stackrel{∧}{x}}\end{array}\right.$)

分析 (1)分別以x,y為橫縱坐標(biāo)描點;
(2)根據(jù)回歸系數(shù)公式計算回歸系數(shù),得出回歸方程;
(3)把x=10代入回歸方程計算$\stackrel{∧}{y}$.

解答 解:(1)作出散點圖如下:

(2)$\overline{x}$=$\frac{2+3+4+5+6}{5}$=4,$\overline{y}$=$\frac{2+3+5+6+9}{5}$=5.
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=2×2+3×3+4×5+5×6+6×9=117,$\sum_{i=1}^{5}{{x}_{i}}^{2}$=22+32+42+52+62=90.
∴$\stackrel{∧}$=$\frac{117-5×4×5}{90-5×{4}^{2}}$=1.7,$\stackrel{∧}{a}$=5-1.7×4=-1.8.
∴線性回歸方程為:$\stackrel{∧}{y}$=1.7x-1.8.
(3)當(dāng)x=10時,$\stackrel{∧}{y}$=1.7×10-1.8=15.2(萬元).
∴當(dāng)投入資金10萬元,獲得利潤的估計值為15.2萬元.

點評 本題考查了線性回歸方程的求解,數(shù)值估計,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.四面體有一條棱長為x,其余棱長為4.當(dāng)四面體體積最大時,其外接球的表面積為$\frac{80}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(文)從4名男生和3名女生中任選3人參加交通文明志愿者活動,則所選3人中恰有一名女生的概率為$\frac{18}{35}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,氣象部門預(yù)報,在海面上生成了一股較強臺風(fēng),在據(jù)臺風(fēng)中心60千米的圓形區(qū)域內(nèi)將受到嚴(yán)重破壞,臺風(fēng)中心這個從海岸M點登陸,并以72千米/小時的速度沿北偏西60°的方向移動,已知M點位于A城的南偏東15°方向,距A城$61\sqrt{2}$千米;M點位于B城的正東方向,距B城$60\sqrt{3}$千米,假設(shè)臺風(fēng)在移動的過程中,其風(fēng)力和方向保持不變,請回答下列問題:
(1)A城和B城是否會受到此次臺風(fēng)的侵襲?并說明理由;
(2)若受到此次臺風(fēng)的侵襲,改城受到臺風(fēng)侵襲的持續(xù)時間有多少小時?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.根據(jù)歷年統(tǒng)計資料,我國東部沿海某地區(qū)60歲以上的老年人占20%,在一個人是60周歲以上的條件下,其患高血壓的概率為45%,則該地區(qū)一個人既是60周歲以上又患高血壓的概率是( 。
A.45%B.25%C.9%D.65%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.100件產(chǎn)品中有3件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,則第2次抽出正品的概率是$\frac{97}{99}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2016年春晚過后,為了研究演員上春晚次數(shù)與受關(guān)注度的關(guān)系,某網(wǎng)站對其中一位經(jīng)常上春晚的演員上春晚次數(shù)與受關(guān)注度進行了統(tǒng)計,得到如下數(shù)據(jù):
上春晚次數(shù)x(單位:次)246810
粉絲數(shù)量y(單位:萬人)1525507090
(Ⅰ)若該演員的粉絲數(shù)量y與上春晚次數(shù)x滿足線性回歸方程,試求回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)根據(jù)以上數(shù)據(jù)分析,估計該演員上春晚12次時的粉絲數(shù)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.從某種設(shè)備中隨機抽取5個,獲得使用年限 xi(年)與所支出的修理費用 yi(萬元)的數(shù)據(jù)資料,算得
$\sum_{i=1}^{5}$xi=20,$\sum_{i=1}^{5}$yi=25,$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90
(1)求回歸方程$\widehat{y}$=bx+a;
(2)判斷變量 x與 y之間是正相關(guān)還是負(fù)相關(guān);
(3)估計使用年限為10年時維修費用是多少.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-bx
其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在數(shù)字1,2,3,4,5的排列a1a2a3a4a5中,滿足:a1<a2,a2>a3,a3<a4,a4>a5的排列個數(shù)是16.

查看答案和解析>>

同步練習(xí)冊答案