【題目】著名數(shù)學家華羅庚先生曾說過:“數(shù)缺形時少直觀,形缺數(shù)時難入微數(shù)形結(jié)合百般好,隔裂分家萬事休.”在數(shù)學的學習和研究中,我們經(jīng)常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也經(jīng)常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征,如某體育品牌的LOGO,可抽象為如圖所示的軸對稱的優(yōu)美曲線,下列函數(shù)中,其圖象大致可“完美”局部表達這條曲線的函數(shù)是( )

A.B.

C.D.

【答案】C

【解析】

首先根據(jù)奇偶性的判斷可知,選項BD不符題意,然后利用特值法,在范圍內(nèi)代入一個特值,即可得出正確答案.

觀察圖象可知,函數(shù)的圖象關(guān)于y軸對稱,

對于A選項,,為偶函數(shù),

對于B選項,,為奇函數(shù),

對于C選項,,為偶函數(shù),

對于D選項,,為奇函數(shù),

而選項BD為奇函數(shù),其圖象關(guān)于原點對稱,不合題意;

對選項A而言,當時,如取,,則有fx)<0,不合題意;

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標原點,且橢圓的離心率均為

求橢圓與橢圓的標準方程;

Ⅱ)過點M的互相垂直的兩直線分別與,交于點A,B(點A、B不同于點M),當的面積取最大值時,求兩直線MA,MB斜率的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中,,,以為軸將旋轉(zhuǎn),形成三棱錐

(Ⅰ)求證:;

(Ⅱ)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的四個頂點,過E的左焦點F且不與坐標軸垂直的直線lE交于AB兩點,線段AB的垂直平分線mx軸,y軸分別交于M,N兩點,交線段AB于點C.

1)求E的方程;

2)設(shè)O為坐標原點,記的面積為的面積為,且,當時,求l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足,an+23an+12an,a11,a23,記bn,Sn為數(shù)列{bn}的前n項和.

1)求證:{an+1an}為等比數(shù)列,并求an

2)求證:Sn.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lnxtx+t.

1)討論fx)的單調(diào)性;

2)當t=2時,方程fx)=max恰有兩個不相等的實數(shù)根x1,x2,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)整數(shù)滿足..f的最小值f0.并確定使f=f0成立的數(shù)組的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓P是橢圓的上頂點,過點P作斜率為的直線l交橢圓于另一點A,設(shè)點A關(guān)于原點的對稱點為B

1)求面積的最大值;

2)設(shè)線段PB的中垂線與y軸交于點N,若點N在橢圓內(nèi)部,求斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

同步練習冊答案