已知向量
a
b
的夾角為
π
4
,且|
a
|=4,(
1
2
a
+
b
)•(2
a
-3
b
)=12,則向量
b
在向量
a
方向上的投影是( 。
A、
2
B、4
C、4
2
D、1
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:利用數(shù)量積的定義和性質(zhì)、投影的定義即可得出.
解答: 解:∵向量
a
,
b
的夾角為
π
4
,且|
a
|=4,
a
b
=|
a
| |
b
|
cos
π
4
=2
2
|
b
|

∵(
1
2
a
+
b
)•(2
a
-3
b
)=12,
a
2
+
1
2
a
b
-3
b
2
=12,
化為3|
b
|2-
2
|
b
|-4=0
,
解得|
b
|
=
2

則向量
b
在向量
a
方向上的投影=|
b
|cos
π
4
=
2
×
2
2
=1.
故選:D.
點評:本題考查了數(shù)量積的定義和性質(zhì)、投影的定義,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體AOCB中,∠AOB=∠AOC=∠BOC=90°,OA=a,OB=b,OC=c,直角頂點O在底面ABC上的射影是H,則下列命題正確的有
 
.(寫出所有正確命題的序號)
①底面△ABC是銳角三角形;
②四面體AOCB的對棱互相垂直;
③四面體AOCB的外接球半徑R=
1
2
a2+b2+c2
;
④點H是△ABC的垂心;
2
OH2
=
1
a2
+
1
b2
+
1
c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C:x2+y2=9中弦AB的長為3
2
,則
AB
AC
=( 。
A、0
B、3
C、9
D、9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是△ABC所在的平面內(nèi)一點,AB=4,
PA
+
PB
+
PC
=
0
,
PA
PB
=
PB
PC
=
PC
PA
,若點D、E分別滿足
DC
=-
AC
BE
=3
EC
,則
AP
DE
=(  )
A、8
B、
3
C、-4
3
D、-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m為一條直線,α、β為兩個不同的平面,則下列說法正確的是(  )
A、若m∥α,α⊥β,則m⊥β
B、若m⊥α,α∥β,則m⊥β
C、若m∥α,α∥β,則m∥β
D、若m∥α,m∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人忘記了自己的文檔密碼,但記得該密碼是由一個2,一個9,兩個6組成的四位數(shù),于是用這四個數(shù)隨意排成一個四位數(shù),輸入電腦嘗試,那么他找到自己的文檔密碼最多嘗試次數(shù)為( 。
A、36B、24C、18D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足
z+i
i
=2+i(其中i為虛數(shù)單位),則z的共軛復(fù)數(shù)為( 。
A、-1-iB、1-i
C、-1+iD、1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長為10厘米的線段AB上任取一點G,以AG為半徑作圓,則圓的面積介于36π平方厘米到64π平方厘米的概率是( 。
A、
9
25
B、
16
25
C、
3
10
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為Sn,a4=S2,a2n+2=2an,
(1)求數(shù)列{an}的通項公式;
(2)若bn=
4
anan+1
,求數(shù)列{bn}的前n項和Tn,并求Tn的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案