4.給出如下列聯(lián)表:
患心臟病患其它病合  計(jì)
高血壓201030
不高血壓305080
合  計(jì)5060110
參照公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,P(K2≥10.828)≈0.001,p(K2≥6.635)≈0.001得到的正確結(jié)論是( 。
A.有99%以上的把握認(rèn)為“高血壓與患心臟病無關(guān)”
B.有99%以上的把握認(rèn)為“高血壓與患心臟病有關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“高血壓與患心臟病無關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“高血壓與患心臟病有關(guān)”

分析 由P(K2≥6.635)≈0.010得到統(tǒng)計(jì)結(jié)論.

解答 解:因?yàn)镻(K2≥10.828)≈0.001,p(K2≥6.635)≈0.001,
所以有99%以上的把握認(rèn)為“高血壓與患心臟病有關(guān)”.
故選:B.

點(diǎn)評 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用,考查了學(xué)生對觀測值的理解,是基礎(chǔ)的概念題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,圓O為△ABC的外接圓,過點(diǎn)C作圓O的切線交AB的延長線于點(diǎn)D,∠ADC的平分線交AC于點(diǎn)E,∠ACB的平分線交AD于點(diǎn)H.
(1)求證:CH⊥DE;
(2)若AE=2CE.證明:DC=2DB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={x|x∈N,$\frac{12}{6-x}$∈N},則集合A用列舉法表示為{0,2,3,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.請用多種方法證明不等式:(用一種方法得8分,兩種方法得14分,三種方法得16分.)
已知a,b∈(0,+∞),證明:$\frac{a}{{\sqrt}}$+$\frac{{\sqrt{a}}}$≥$\sqrt{a}$+$\sqrt$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.畫出$\frac{5}{6}$π的正弦、余弦線,并寫出對應(yīng)的正弦、余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以下四個命題中,正確的是(  )
A.第一象限角一定是銳角
B.{α|α=kπ+$\frac{π}{6}$,k∈Z}≠{β|β=-kπ+$\frac{π}{6}$,k∈Z}
C.若α是第二象限的角,則sin2α<0
D.第四象限的角可表示為{α|2kπ+$\frac{3}{2}$π<α<2kπ,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知全集U=R,集合A={x|x≤1},集合B={x|x≥2},則∁U(A∪B)={x|1<x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.?dāng)?shù)列{an}中,設(shè)Sn是它的前n項(xiàng)和,若log2(Sn+1)=n+1,則數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}{3,n=1}\\{{2}^{n},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從2、3、8、9任取兩個不同的數(shù)值,分別記為a,b,則logab為整數(shù)的概率( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊答案