14.從2、3、8、9任取兩個不同的數(shù)值,分別記為a,b,則logab為整數(shù)的概率( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

分析 由已知條件先求出基本事件總數(shù),再利用列舉法求出logab為整數(shù)滿足的基本事件個數(shù),由此能求出logab為整數(shù)的概率.

解答 解:從2,3,8,9中任取兩個不同的數(shù)字,分別記為a,b,
基本事件總數(shù)n=${A}_{4}^{2}$=12,
logab為整數(shù)滿足的基本事件個數(shù)為(2,8),(3,9),共2個,
∴l(xiāng)ogab為整數(shù)的概率P=$\frac{2}{12}$=$\frac{1}{6}$.
故選D.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出如下列聯(lián)表:
患心臟病患其它病合  計(jì)
高血壓201030
不高血壓305080
合  計(jì)5060110
參照公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,P(K2≥10.828)≈0.001,p(K2≥6.635)≈0.001得到的正確結(jié)論是(  )
A.有99%以上的把握認(rèn)為“高血壓與患心臟病無關(guān)”
B.有99%以上的把握認(rèn)為“高血壓與患心臟病有關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“高血壓與患心臟病無關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“高血壓與患心臟病有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知下列四個命題:
①函數(shù)f(x)=$\frac{1}{3}$x-lnx(x>0),則y=f(x)在區(qū)間($\frac{1}{e}$,1)內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn);
②函數(shù)f(x)=log2(x+$\sqrt{1+{x^2}}$),g(x)=1+$\frac{2}{{{2^x}-1}}$不都是奇函數(shù);
③若函數(shù)f(x)滿足f(x-1)=-f(x+1),且f(1)=2,則f(7)=-2;
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0且a≠1)的兩根,則x1x2=1,
其中正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=|x+a|的圖象關(guān)于y軸對稱,則f(x)的單調(diào)減區(qū)間為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\frac{1}{x}$+lg(1-2x)定義域?yàn)閧x|x<$\frac{1}{2}$且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)動點(diǎn)P在正方體A1B1C1D1-ABCD的內(nèi)部隨機(jī)移動,則△ABP是銳角三角形的概率為1-$\frac{π}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直線l:y=x+5$\sqrt{7}$,橢圓上任意點(diǎn)P,則點(diǎn)P到直線l的距離的最大值( 。
A.3$\sqrt{14}$B.2$\sqrt{7}$C.3$\sqrt{7}$D.2$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.不等式$\frac{x-2}{x+3}$≥0的解集為(-∞,-3)∪[2,+∞)(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.化簡或求值
(1)(2a${\;}^{\frac{1}{2}}}$b${\;}^{\frac{1}{3}}}$)(a${\;}^{\frac{2}{3}}}$b${\;}^{\frac{1}{2}}}$)÷($\frac{1}{3}$a${\;}^{\frac{1}{6}}}$b${\;}^{\frac{5}{6}}}$);
(2)($\frac{9}{16}$)${\;}^{\frac{1}{2}}}$+10lg9-2lg2+ln$\root{4}{e^3}$-log98•log4$\root{3}{3}$.

查看答案和解析>>

同步練習(xí)冊答案