【題目】設(shè)函數(shù)f(x)=xea﹣x+bx,曲線y=f(x)在點(2,f(2))處的切線方程為y=(e﹣1)x+4,
(1)求a,b的值;
(2)求f(x)的單調(diào)區(qū)間.
【答案】
(1)解:∵y=f(x)在點(2,f(2))處的切線方程為y=(e﹣1)x+4,
∴當x=2時,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,
同時f′(2)=e﹣1,
∵f(x)=xea﹣x+bx,
∴f′(x)=ea﹣x﹣xea﹣x+b,
則 ,
即a=2,b=e;
(2)解:∵a=2,b=e;
∴f(x)=xe2﹣x+ex,
∴f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x)e2﹣x+e,
f″(x)=﹣e2﹣x﹣(1﹣x)e2﹣x=(x﹣2)e2﹣x,
由f″(x)>0得x>2,由f″(x)<0得x<2,
即當x=2時,f′(x)取得極小值f′(2)=(1﹣2)e2﹣2+e=e﹣1>0,
∴f′(x)>0恒成立,
即函數(shù)f(x)是增函數(shù),
即f(x)的單調(diào)區(qū)間是(﹣∞,+∞)
【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)的切線斜率以及f(2),建立方程組關(guān)系即可求a,b的值;(2)求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求f(x)的單調(diào)區(qū)間.
【考點精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)= ,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖幾何體中,等邊三角形所在平面垂直于矩形所在平面,又知,//.
(1)若的中點為,在線段上,//平面,求;
(2)若平面與平面所成二面角的余弦值為,求直線與平面所成角的正弦值;
(3)若中點為,,求在平面上的正投影。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分條件,求實數(shù)m的取值范圍;
(2)若是 成立的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若對任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,則實數(shù)a的最大值為( )
A.2
B.
C.4
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的離心率為,且過點.
(1)求的方程;
(2)若動點在直線上,過作直線交橢圓于兩點,使得,再過作直線,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:不等式x2+(m﹣1)x+1>0的解集為R;q:x∈(0,+∞),m≤x+ 恒成立.若“p且q”為假命題,“p或q”為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com