20.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$,則z=3x+2y的最大值為6.

分析 畫出已知約束條件對(duì)應(yīng)的可行域,再求出對(duì)應(yīng)的角點(diǎn)的坐標(biāo),分別代入目標(biāo)函數(shù),比較目標(biāo)函數(shù)值即可得到其最優(yōu)解.

解答 解:約束條件$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$對(duì)應(yīng)的可行域如下圖所示
當(dāng)x=2,y=0時(shí),z=3x+2y=6,
故z=3x+2y的最大值為:6;
故答案為:6.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是簡(jiǎn)單線性規(guī)劃的應(yīng)用,其中利用角點(diǎn)法是解答線性規(guī)劃類小題最常用的方法,一定要掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)相交,其中一個(gè)交點(diǎn)P的橫坐標(biāo)為4,若與P相鄰的兩個(gè)交點(diǎn)的橫坐標(biāo)為2,8,則函數(shù)f(x)(  )
A.在[0,3]上是減函數(shù)B.在[-3,0]上是減函數(shù)
C.在[0,π]上是減函數(shù)D.在[-π,0]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,若AB=2,∠BAD=60°.則當(dāng)四棱錐P-ABCD的體積等于2$\sqrt{3}$時(shí),則PC=$\sqrt{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{2x}{3x+2}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)(理)設(shè)bn=anan+1,數(shù)列{bn}的前n項(xiàng)和為Sn,若Sn<$\frac{m-2016}{2}$對(duì)一切正整數(shù)n都成立,求最小的正整數(shù)m的值.
(2)(文)設(shè)bn=$\frac{1}{a_n}$×2n,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.以下四個(gè)命題,正確的是( 。
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
③在回歸直線方程$\widehat{y}$=0.2x+12中,當(dāng)變量x每增加一個(gè)單位時(shí),變量y一定增加0.2單位;
④對(duì)于兩分類變量X與Y,求出其統(tǒng)計(jì)量K2,K2越小,我們認(rèn)為“X與Y有關(guān)系”的把握程度越。
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在復(fù)平面內(nèi),點(diǎn)A(2,-1),B(a,b)分別表示復(fù)數(shù)z1和z2,若$\frac{z_2}{z_1}$=i,則a+b=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}$sin2x+$\frac{1}{4}$+$\frac{1}{4}$cos2x-$\frac{3}{4}$sin2x.
(1)求函數(shù)f(x)的最小正周期;
(2)已知函數(shù)f(x)=-$\frac{3}{10}$$\sqrt{2}$且x∈[0,$\frac{π}{2}$],求tan2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合M={$\frac{π}{2}$,$\frac{π}{3}$,-$\frac{π}{4}}$},N={x|sinx>0},則M∩N為( 。
A.{$\frac{π}{2}$,$\frac{π}{3}$,-$\frac{π}{4}$}B.{$\frac{π}{2}$,$\frac{π}{3}$}C.{$\frac{π}{3}$,-$\frac{π}{4}$}D.{$\frac{π}{2}$,-$\frac{π}{4}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)i是虛數(shù)單位,若復(fù)數(shù)2a+$\frac{5i}{1-2i}$(a∈R)是純虛數(shù),則a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案