已知a>0,b>0,且a+2b=ab,則ab的最小值是


  1. A.
    4
  2. B.
    8
  3. C.
    16
  4. D.
    32
B
分析:由條件可得ab≥2,化簡可得 ≥2,從而有ab≥8,由此求得ab的最小值.
解答:∵已知a>0,b>0,且a+2b=ab,∴ab≥2
化簡可得 ≥2,
∴ab≥8,當且僅當a=2b時等號成立,
故ab的最小值是8,
故選B.
點評:本題主要考查基本不等式的應用,注意檢驗等號成立的條件,式子的變形是解題的關(guān)鍵,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,則α+β的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在平面直角坐標系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數(shù))與直線l:
x=1+2t
y=1-t
(t為參數(shù))是否有公共點,并證明你的結(jié)論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,b>0,a+b=1,則a+
1
a
+b+
1
b
的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學 來源:松江區(qū)二模 題型:解答題

已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

同步練習冊答案