判斷命題“已知a,x為實數(shù),若關于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,則a≥1”的逆否命題的真假.

解析:逆否命題:已知a,x為實數(shù),若a<1,則關于x的不等式x2+(2a+1)x+a2+2≤0的解集為空集.

判斷如下:

拋物線y=x2+(2a+1)x+a2+2開口向上,?

判別式Δ=(2a+1)2-4(a2+2)=4a-7,?

a<1,∴4a-7<0,即Δ<0,?

∴關于x的不等式x2+(2a+1)x+a2+2≤0的解集為空集.故逆否命題為真命題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列四個判斷:
①10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
②命題“若α>β,則tanα>tanβ”的逆命題為真命題;
③已知a>0,b>0,則由y=(a+b)(
1
a
+
4
b
)≥2
ab
•2
4
ab
ymin=8

④若命題“?x∈R,|x-a|+|x+1|≤2”是假命題,則命題“?x∈R,|x-a|+|x+1|>2”是真命題;
⑤設隨機變量ξ~N(0,σ 2),且P(ξ<-1)=
1
4
,則P(0<ξ<1)=
1
4

其中正確的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷命題“已知a,x為實數(shù),若關于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,則a≥1”的逆否命題的真假.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆新課標高二下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

(滿分12分)寫出命題:“已知a,x為實數(shù),如果關于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,則a≥1”的逆命題,否命題,逆否命題并判斷其真假。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設原命題為“已知A={x|-3<x<5},B={x|x<a}.若A∩B≠?,則-3<a<5”.寫出逆命題,否命題和逆否命題,并判斷原命題和其余3個命題的真假.

查看答案和解析>>

同步練習冊答案