4.?dāng)?shù)列{an}滿足${a_n}=\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$,記其前n項和為Sn,若Sn=8,則項數(shù)n的值為80.

分析 化簡數(shù)列的通項公式,然后求和,列出方程求解即可.

解答 解:數(shù)列{an}滿足${a_n}=\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$=$\sqrt{n+1}-\sqrt{n}$,
其前n項和為Sn=$\sqrt{n+1}-1$,
若Sn=8,可得$\sqrt{n+1}-1=8$,可得n=80.
故答案為:80.

點評 本題考查數(shù)列求和,數(shù)列的遞推關(guān)系式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,試問實數(shù)m取何值時,復(fù)數(shù)z
(1)為純虛數(shù)
(2)為實數(shù)
(3)對應(yīng)的點在復(fù)平面的第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知log35=a,log37=b,則log1535可用a,b表示為$\frac{a+b}{1+a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=blnx.
(Ⅰ)當(dāng)b=1時,若函數(shù)F(x)=f(x)+ax2-x在其定義域上為增函數(shù),求a的取值范圍;
(Ⅱ)若在[1,e]上存在x0,使得x0-f(x0)<-$\frac{1+b}{x_0}$成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖1所示,在四邊形ABCD中,AD∥BC,AD=AB=1,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐ABCD(如圖2)
(1)求證:平面ADC⊥平面ABC;
(2)求三棱錐D-ABC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在數(shù)列{an}中,a1=1,an+1=2an+1,則a10=( 。
A.1023B.1024C.1025D.511

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)$f(x)=\frac{1}{{{e^{|x|}}}}-{x^2}$,若$f({3^{a-1}})>f(-\frac{1}{9})$,則實數(shù)a的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.x+x-1=4,則${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.①?x∈R,x≤0;②至少有一個整數(shù),它既不是合數(shù),也不是素數(shù);③?x∈∁RQ,x2∈∁RQ,以上三個命題,真命題的個數(shù)是(  )
A.1B.2C.3D.0

查看答案和解析>>

同步練習(xí)冊答案