13.已知拋物線y=-$\frac{3}{16}$(x-1)(x-9)與x軸交于A,B兩點,對稱軸與拋物線交于點C,與x軸交于點D,⊙C的半徑為2,G為⊙C上一動點,P為AG的中點,則DP的最大值為$\frac{7}{2}$.

分析 由題意,A(1,0),B(9,0),C(5,3),G(5+2cosα,3+2sinα),D(5,0),P(3+cosα,$\frac{3}{2}$+sinα),表示出DP,即可求出DP的最大值.

解答 解:由題意,A(1,0),B(9,0),C(5,3),G(5+2cosα,3+2sinα),D(5,0),P(3+cosα,$\frac{3}{2}$+sinα),
∴PD2=(2+cosα)2+($\frac{3}{2}$+sinα)2=$\frac{29}{4}$+4cosα+3sinα≤$\frac{49}{4}$,
∴DP的最大值為$\frac{7}{2}$.
故答案為:$\frac{7}{2}$,

點評 本題考查拋物線方程、圓的方程,正確設出點的坐標是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-2,0).點O是坐標原點.
(1)設$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,若四邊形OACB是平行四邊形,求點C的坐標;
(2)若$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=0,求證$\overrightarrow{c}$⊥($\overrightarrow{a}$-$\overrightarrow$);
(3)求<$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{a}$>的值;
(4)若$\overrightarrow{c}$$⊥\overrightarrow$($\overrightarrow{c}$≠$\overrightarrow{0}$),當t∈[-$\sqrt{3}$,2]時,求|$\overrightarrow{a}$-t$\frac{\overrightarrow{c}}{|\overrightarrow{c}|}$|的取值范圍;
(5)若|$\overrightarrow{c}$|=|$\overrightarrow{a}$|,求($\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值及<$\overrightarrow{c}$-$\frac{\overrightarrow}{2}$,$\overrightarrow{c}$>的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設(x2+4x+3)n=a0+a1x+a2x2+…+a2nx2n(n∈N+
(1)求a1+a2+…+a2n;
(2)設f(n)=a1,g(n)=n(n+1)•2n,試比較f(n)與g(n)的大小,并證明你的結(jié)論..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+ax+b,g(x)=lnx,記F(x)=f(x)-g(x),求F(x)在[1,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知空間四邊形ABCD,E、H分別是邊AB、AD的中點,F(xiàn)、G分別是邊BC、CD上的點,且$\frac{CF}{CB}$=$\frac{CG}{CD}$=$\frac{3}{5}$,求證直線EF、GH、AC交于一點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)求值:lg5•lg400+(lg2${\;}^{\sqrt{2}}$)2;
(2)已知x=log23,求$\frac{{8}^{x}+{8}^{-x}}{{2}^{x}+{2}^{-x}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知α+β=7π,則sinα與sinβ的關(guān)系是sinα=sinβ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.等比數(shù)列{an}中,a2•a8=4,求a4•a5•a6的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.求函數(shù)y=$\sqrt{tanx-1}$+lg(cosx-$\frac{1}{2}$)的定義域.

查看答案和解析>>

同步練習冊答案