成等差數(shù)列是成等比數(shù)列的:

A.充分不必要條件        B.必要不充分條件

C.充要條件          D.既不充分又不必要條件

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從數(shù)列{an}中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱(chēng)之為數(shù)列{an}的一個(gè)子數(shù)列.設(shè)數(shù)列{an}是一個(gè)首項(xiàng)為a1、公差為d(d≠0)的無(wú)窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為{an}的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項(xiàng)、第m(m≥2)項(xiàng)(設(shè)am=t)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)當(dāng)且僅當(dāng)t為何值時(shí),該數(shù)列為{an}的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m個(gè)不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個(gè)圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項(xiàng)和Sn(n≤m)滿(mǎn)足:S3=15,S2009=S2007+12a1,求通項(xiàng)an(n≤m);
(Ⅱ)若每個(gè)數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分,(Ⅰ)問(wèn)5分,(Ⅱ)問(wèn)7分)

設(shè)個(gè)不全相等的正數(shù)依次圍成一個(gè)圓圈.

(Ⅰ)若,且是公差為的等差數(shù)列,而是公比為的等比數(shù)列;數(shù)列的前項(xiàng)和滿(mǎn)足:,求通項(xiàng);

(Ⅱ)若每個(gè)數(shù)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:;     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分,(Ⅰ)問(wèn)5分,(Ⅱ)問(wèn)7分)

設(shè)個(gè)不全相等的正數(shù)依次圍成一個(gè)圓圈。

(Ⅰ)若,且是公差為的等差數(shù)列,而是公比為的等比數(shù)列;數(shù)列的前項(xiàng)和滿(mǎn)足:,求通項(xiàng);

(Ⅱ)若每個(gè)數(shù)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分. 第3小題滿(mǎn)分8分.

(文)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱(chēng)為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無(wú)窮等差數(shù)列的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無(wú)窮等差數(shù)列中,是否存在無(wú)窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請(qǐng)給出數(shù)列的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;

(3) 他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無(wú)窮等比數(shù)  列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案