(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對于數(shù)列,從中選取若干項(xiàng),不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).
(1) 若成等比數(shù)列,求的值;
(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;
(3) 他在研究過程中猜想了一個(gè)命題:“對于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù) 列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由與的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
(1)d=0(2)存在bn=4n-1為符合條件的一個(gè)子數(shù)列,因?yàn)閎n="1+3M" ="1+3" [(M+1)-1]是{an}中的第M+1項(xiàng)(3)通過計(jì)算可以得到>,從而原命題為假命題
【解析】
試題分析:(1)由a32=a1a5, ……2分
即(a1+2d)2=a1(a1+4d),得d=0. ……4分
(2) an=1+3(n-1),如bn=4n-1便為符合條件的一個(gè)子數(shù)列. ……7分
因?yàn)閎n=4n-1=(1+3)n-1=1+3+32+…+3n-1=1+3M, ……9分
這里M=+3+…+3n-2為正整數(shù),
所以,bn="1+3M" ="1+3" [(M+1)-1]是{an}中的第M+1項(xiàng),得證. ……11分
(注:bn的通項(xiàng)公式不唯一)
(3) 該命題為假命題. ……12分
由已知可得,
因此,,又,
故 , ……15分
由于是正整數(shù),且,則,
又是滿足的正整數(shù),則,
,
所以,> ,從而原命題為假命題. ……18分
考點(diǎn):本小題主要考查等差數(shù)列和等比數(shù)列是綜合運(yùn)算,考查學(xué)生分析問題、解決問題的能力和運(yùn)算求解以及推理論證的能力.
點(diǎn)評:等差數(shù)列和等比數(shù)列是高考中常考的兩種特殊數(shù)列,它們的判定和通項(xiàng)公式、前n項(xiàng)和公式的應(yīng)用要熟練掌握,靈活應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)
若數(shù)列滿足:是常數(shù)),則稱數(shù)列為二階線性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱為特征根; 數(shù)列的通項(xiàng)公式均可用特征根求得:
①若方程有兩相異實(shí)根,則數(shù)列通項(xiàng)可以寫成,(其中是待定常數(shù));
②若方程有兩相同實(shí)根,則數(shù)列通項(xiàng)可以寫成,(其中是待定常數(shù));
再利用可求得,進(jìn)而求得.
根據(jù)上述結(jié)論求下列問題:
(1)當(dāng),()時(shí),求數(shù)列的通項(xiàng)公式;
(2)當(dāng),()時(shí),求數(shù)列的通項(xiàng)公式;
(3)當(dāng),()時(shí),記,若能被數(shù)整除,求所有滿足條件的正整數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負(fù)數(shù)和正數(shù),且對任意的正整數(shù)n,當(dāng)≥0時(shí), 有[, ]=
[, ];當(dāng)<0時(shí), 有[, ]= [, ].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證;
(3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分18分)已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點(diǎn)的直線從左到右依次與拋物線C及圓交于A、C、D、B四點(diǎn),試證明為定值;
(Ⅲ)過A、B分別作拋物C的切線且交于點(diǎn)M,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市青浦區(qū)高三上學(xué)期期終學(xué)習(xí)質(zhì)量調(diào)研測試數(shù)學(xué)試卷 題型:解答題
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè),對于項(xiàng)數(shù)為的有窮數(shù)列,令為中最大值,稱數(shù)列為的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.
考查自然數(shù)的所有排列,將每種排列都視為一個(gè)有窮數(shù)列.
(1)若,寫出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;
(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請說明理由.
(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿足所有條件的數(shù)列的個(gè)數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分18分,其中第1小題6分,第2小題6分,第3小題6分)
已知數(shù)列的首項(xiàng)為1,前項(xiàng)和為,且滿足,.?dāng)?shù)列滿足.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 當(dāng)時(shí),試比較與的大小,并說明理由;
(3) 試判斷:當(dāng)時(shí),向量是否可能恰為直線的方向向量?請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com