【題目】在棱長為1的正方體中,點是對角線上的動點(點不重合),則下列結論正確的是__________

①存在點,使得平面平面

②存在點,使得平面平面;

的面積可能等于;

④若分別是在平面與平面的正投影的面積,則存在點,使得

【答案】①②③④

【解析】

根據(jù)正方體的結構特征,利用線面位置關系的判定定理和性質定理,以及三角形的面積公式和投影的定義,即可求解,得到答案.

①如圖所示,當中點時,可知也是中點且,,所以平面,所以,同理可知,

,所以平面,

平面,所以平面平面,故正確;

②如圖所示,取靠近的一個三等分點記為,記,因為,所以,所以靠近的一個三等分點,

中點,又中點,所以,且,,所以平面平面,且平面,

所以平面,故正確;

③如圖所示,作,在中根據(jù)等面積得:,

根據(jù)對稱性可知:,又,所以是等腰三角形,

,故正確;

④如圖所示,設,在平面內的正投影為,在平面內的正投影為,所以,,當時,解得:,故正確.

故答案為 ①②③④

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,點.

1)若線段的中垂線與圓相切,求實數(shù)的值;

2)過直線上的點引圓的兩條切線,切點為,若,則稱點好點”. 若直線上有且只有兩個好點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主須為機動車購買的險種.若普通座以下私家車投保交強險第一年的費用(基本保費)是元,在下一年續(xù)保時,實行費率浮動制,其保費與上一年度車輛發(fā)生道路交通事故情況相聯(lián)系,具體浮動情況如下表:

類型

浮動因素

浮動比率

上一年度未發(fā)生有責任的道路交通事故

下浮

上兩年度未發(fā)生有責任的道路交通事故

下浮

上三年度未發(fā)生有責任的道路交通事故

下浮

上一年度發(fā)生一次有責任不涉及死亡的道路交通事故

上一年度發(fā)生兩次及以上有責任不涉及死亡的道路交通事故

上浮

上三年度發(fā)生有責任涉及死亡的道路交通事故

上浮

某一機構為了研究某一品牌座以下投保情況,隨機抽取了輛車齡滿三年的該品牌同型號私家車的下一年續(xù)保情況,統(tǒng)計得到如下表格:

類型

數(shù)量

以這輛該品牌汽車的投保類型的頻率視為概率.

(I)試估計該地使用該品牌汽車的一續(xù)保人本年度的保費不超過元的概率;

(II)記為某家庭的一輛該品牌車在第四年續(xù)保時的費用,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機模擬的方法估計小張三次射擊恰有兩次命中十環(huán)的概率,先由計算器產生09之間取整數(shù)值的隨機數(shù),指定2,46,8表示命中十環(huán),0,1,35,7,9表示未命中十環(huán),再以每三個隨機數(shù)為一組,代表三次射擊的結果,經(jīng)隨機模擬產生了如下20組隨機數(shù):

321 421 292 925 274 632 802 478 598 663

531 297 396 021 406 318 235 113 507 965

據(jù)此估計,小張三次射擊恰有兩次命中十環(huán)的概率為(

A.0.30B.0.35C.0.40D.0.45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿意度評分值在內的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面ABCD,,,,點E為棱PC的中點.

1證明:

2BE的長;

3F為棱PC上一點,滿足,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關于的回歸直線方程:

(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?

附:,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有以下命題:如果向量與任何向量不能構成空間向量的一組基底,那么的關系是不共線;為空間四點,且向量不構成空間的一個基底,那么點一定共面;已知向量是空間的一個基底,則向量,也是空間的一個基底。其中正確的命題是( )

A. ①②B. ①③C. ②③D. ①②③

查看答案和解析>>

同步練習冊答案