【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若對(duì)于任意的,都有成立,求正整數(shù)k的最大值.
【答案】(1)見(jiàn)解析;(2)最大值為2.
【解析】
(1)求導(dǎo)得,因?yàn)?/span>,故分三種情況進(jìn)行分類(lèi)討論即可.
(2)帶入化簡(jiǎn)可得,因?yàn)槭顷P(guān)于的二次函數(shù)零點(diǎn)問(wèn)題,故用判別式小于0恒成立,化簡(jiǎn)得,
再設(shè)分析單調(diào)性,由于零點(diǎn)無(wú)法求出,故判斷零點(diǎn)的大致范圍,設(shè)為再分析即可.
(1)
①恒成立,在R上單調(diào)遞增.
②當(dāng)令解得,
當(dāng),函數(shù)在上單調(diào)遞增,
當(dāng),函數(shù)在上單調(diào)遞減,
③當(dāng),解得
當(dāng),函數(shù)在上單調(diào)遞增,
當(dāng),函數(shù)在上單調(diào)遞減,
(2)對(duì)任意的成立,
即 成立,
即 恒成立
即 ,令,
令,在上單調(diào)遞增,
又,,在上有唯一零點(diǎn),且,當(dāng)為減函數(shù),
當(dāng)為增函數(shù),,
,,恒成立
是正整數(shù),或,的最大值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是數(shù)列的前項(xiàng)和,對(duì)任意都有成立(其中是常數(shù)).
(1)當(dāng)時(shí),求:
(2)當(dāng)時(shí),
①若,求數(shù)列的通項(xiàng)公式:
②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱(chēng)該數(shù)列是“數(shù)列”,如果,試問(wèn):是否存在數(shù)列為“數(shù)列”,使得對(duì)任意,都有,且,若存在,求數(shù)列的首項(xiàng)的所有取值構(gòu)成的集合;若不存在.說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市要建造一個(gè)邊長(zhǎng)為的正方形市民休閑公園,將其中的區(qū)域開(kāi)挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線(xiàn)是函數(shù)圖像的一部分,過(guò)對(duì)邊上一點(diǎn)的區(qū)域內(nèi)作一次函數(shù)的圖像,與線(xiàn)段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線(xiàn)段與曲線(xiàn)有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).
(1)寫(xiě)出函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)的橫坐標(biāo)為,將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若的值域?yàn)?/span>,求的值;
(Ⅱ)巳,是否存在這祥的實(shí)數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個(gè)零點(diǎn).若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定兩個(gè)命題,p:對(duì)任意實(shí)數(shù)x都有x2+ax+1≥0恒成立;q:冪函數(shù)y=xa-1在(0,+∞)內(nèi)單調(diào)遞減;如果p與q中有且僅有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)的左右頂點(diǎn)分別為.直線(xiàn)和兩條漸近線(xiàn)交于點(diǎn),點(diǎn)在第一象限且,是雙曲線(xiàn)上的任意一點(diǎn).
(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)是否存在點(diǎn)P使得為直角三角形?若存在,求出點(diǎn)P的個(gè)數(shù);
(3)直線(xiàn)與直線(xiàn)分別交于點(diǎn),證明:以為直徑的圓必過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線(xiàn)在處的切線(xiàn)方程;
(2)當(dāng)時(shí),求函數(shù)的最小值;
(3)已知,且任意有,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn),,且.
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)上述的取值范圍為,若存在,使對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com