【題目】設(shè)函數(shù)

(Ⅰ)若當(dāng)時(shí)取得極值,求a的值及的單調(diào)區(qū)間;

(Ⅱ)若存在兩個(gè)極值點(diǎn),證明:

【答案】(Ⅰ).單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)見(jiàn)解析

【解析】

1)求導(dǎo)數(shù),由題意可知為方程的根,求解值,再令導(dǎo)數(shù),,分別求解單調(diào)增區(qū)間與單調(diào)減區(qū)間,即可.

2)函數(shù)存在兩個(gè)極值點(diǎn),等價(jià)于方程上有兩個(gè)不等實(shí)根,則,即可,再將變形整理為;若證明不等式,則需證明,由變形為,不妨設(shè),即證,令,則,求函數(shù)的取值范圍,即可證明.

(Ⅰ)

時(shí),取得極值,

,

,

的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為

(Ⅱ)

存在兩個(gè)極值點(diǎn),

∴方程上有兩個(gè)不等實(shí)根

∴所證不等式等價(jià)于

即變形為

不妨設(shè),即變形為

變形為,

上遞增.

,

成立,

成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】24屆冬奧會(huì)將于202224日至222日在北京市和河北省張家口市聯(lián)合舉行,這是中國(guó)歷史上第一次舉辦冬季奧運(yùn)會(huì).為了宣傳冬奧會(huì),讓更多的人了解、喜愛(ài)冰雪項(xiàng)目,某校高三年級(jí)舉辦了冬奧會(huì)知識(shí)競(jìng)賽(總分100分),并隨機(jī)抽取了名中學(xué)生的成績(jī),繪制成如圖所示的頻率分布直方圖.已知前三組的頻率成等差數(shù)列,第一組和第五組的頻率相同.

)求實(shí)數(shù),的值,并估計(jì)這名中學(xué)生的成績(jī)平均值;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

)已知抽取的名中學(xué)生中,男女生人數(shù)相等,男生喜歡花樣滑冰的人數(shù)占男生人數(shù)的,女生喜歡花樣滑冰項(xiàng)的人數(shù)占女生人數(shù)的,且有95%的把握認(rèn)為中學(xué)生喜歡花樣滑冰與性別有關(guān),求的最小值.

參考數(shù)據(jù)及公式如下:

0.050

0.010

0.001

3.841

6.635

10.828

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二某班共有45人,學(xué)號(hào)依次為1、23、、45,現(xiàn)按學(xué)號(hào)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為5的樣本,已知學(xué)號(hào)為6、24、33的同學(xué)在樣本中,那么樣本中還有兩個(gè)同學(xué)的學(xué)號(hào)應(yīng)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大以來(lái),某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過(guò)不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加,為了制定提升農(nóng)民收入、實(shí)現(xiàn)2020年脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了201950位農(nóng)民的年收入并制成如下頻率分布直方圖:

1)根據(jù)頻率分布直方圖,估計(jì)50位農(nóng)民的平均年收入(單位:千元);(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入X服從正態(tài)分布,其中近似為年平均收入近似為樣本方差,經(jīng)計(jì)算得=6.92,利用該正態(tài)分布,求:

①在扶貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入標(biāo)準(zhǔn)大約為多少千元?

②為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每位農(nóng)民的年收入互相獨(dú)立,問(wèn):這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?

附參考數(shù)據(jù):,若隨機(jī)變量X服從正態(tài)分布,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線,經(jīng)過(guò)點(diǎn)的直線與該雙曲線交于兩點(diǎn).

1)若軸垂直,且,求的值;

2)若,且的橫坐標(biāo)之和為,證明:.

3)設(shè)直線軸交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),,,已知是以為底邊,且邊平行于軸的等腰三角形.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)已知直線軸于點(diǎn),且與曲線相切于點(diǎn),點(diǎn)在曲線上,且直線軸,點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)點(diǎn)為點(diǎn),試判斷點(diǎn)、、三點(diǎn)是否共線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的四棱錐中,底面為矩形,平面,,MN分別是,的中點(diǎn).

1)求證:平面;

2)若直線與平面所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】互聯(lián)網(wǎng)正在改變著人們的生活方式,在日常消費(fèi)中手機(jī)支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學(xué)生在暑期社會(huì)活動(dòng)中針對(duì)人們生活中的支付方式進(jìn)行了調(diào)查研究. 采用調(diào)查問(wèn)卷的方式對(duì)100名18歲以上的成年人進(jìn)行了研究,發(fā)現(xiàn)共有60人以手機(jī)支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.

(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;

(2)某商家為了鼓勵(lì)人們使用手機(jī)支付,做出以下促銷(xiāo)活動(dòng):凡是用手機(jī)支付的消費(fèi)者,商品一律打八折. 已知某商品原價(jià)50元,以上述調(diào)查的支付方式的頻率作為消費(fèi)者購(gòu)買(mǎi)該商品的支付方式的概率,設(shè)銷(xiāo)售每件商品的消費(fèi)者的支付方式都是相互獨(dú)立的,求銷(xiāo)售10件該商品的銷(xiāo)售額的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與直線相切于點(diǎn),點(diǎn)關(guān)于軸對(duì)稱(chēng).

1)求拋物線的方程及點(diǎn)的坐標(biāo);

2)設(shè)軸上兩個(gè)不同的動(dòng)點(diǎn),且滿(mǎn)足,直線、與拋物線的另一個(gè)交點(diǎn)分別為試判斷直線與直線的位置關(guān)系,并說(shuō)明理由.如果相交,求出的交點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案