設(shè)關(guān)于x,y的不等式組
2x-y+1>0
x+m<0
y-m>0
表示的平面區(qū)域內(nèi)存在點(diǎn)P(a,b),滿足a-3b=4,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,1)
B、(-∞,1]
C、(-∞,-1)
D、(-∞,-1]
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:先根據(jù)約束條件
2x-y+1>0
x+m<0
y-m>0
畫出可行域.要使可行域存在點(diǎn)P(a,b),滿足a-3b=4,必有m<-3m+4,要求可行域包含直線y=
1
2
x-1上的點(diǎn),只要邊界點(diǎn)(-m,1-2m)在直線y=
1
3
x-
4
3
的上方,且(-m,m)在直線y=
1
3
x-
4
3
的下方,從而建立關(guān)于m的不等式組,解之可得答案.
解答: 解:約束條件
2x-y+1>0
x+m<0
y-m>0
不是的可行域如圖,
要使可行域存在點(diǎn)P(a,b),滿足a-3b=4,必有m<-3m+4,要求可行域包含直線y=
1
3
x-
4
3
上的點(diǎn),只要邊界點(diǎn)(-m,1-2m)
在直線y=
1
3
x-
4
3
的上方,且(-m,m)在直線y=
1
3
x-
4
3
的下方,
故得不等式組
m<-3m+4
1-2m>-
1
3
m-
4
3
m<-
1
3
m-
4
3
,
解之得:m<-1.
故選:C.
點(diǎn)評(píng):平面區(qū)域的最值問題是線性規(guī)劃問題中一類重要題型,在解題時(shí),關(guān)鍵是正確地畫出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點(diǎn)的坐標(biāo),即可求出答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=
x2
2
-3lnx的一條切線的斜率為2,則切點(diǎn)的橫坐標(biāo)為( 。
A、3
B、2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ax與y=loga
1
x
(a>0,且a≠1)在同一平面直角坐標(biāo)系中的圖象的形狀可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2 
1
2
,(
2
3
-1,3 
1
3
的大小順序?yàn)椋ā 。?/div>
A、3 
1
3
<2 
1
2
<(
2
3
-1
B、2 
1
2
<3 
1
3
<(
2
3
-1
C、(
2
3
-1<2 
1
2
<3 
1
3
D、2 
1
2
<(
2
3
-1<3 
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐S-ABC中,若側(cè)棱 SA=4
3
,高SO=4,則此正三棱錐S-ABC外接球的表面積是( 。
A、36πB、64π
C、144πD、256π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)不為0的等差數(shù)列{an}滿足a4-a72+a10=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b2b12等于( 。
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用邊長(zhǎng)為6分米的正方形鐵皮做一個(gè)無(wú)蓋的水箱,先在四角分別截去一個(gè)小正方形,然后把四邊翻轉(zhuǎn)90°,再焊接而成(如圖).設(shè)水箱底面邊長(zhǎng)為x分米,則( 。
A、水箱容積最大為8立方分米
B、水箱容積最大為64立方分米
C、當(dāng)x在(0,3)時(shí),水箱容積V(x)隨x增大而增大
D、當(dāng)x在(0,3)時(shí),水箱容積V(x)隨x增大而減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)若
a
b
,
c
均為單位向量,
a
b
=-
1
2
,
c
=x
a
+y
b
a
b
=-
1
2
(x,y∈R),則x+y的最大值是( 。
A、2
B、
3
C、
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列函數(shù)的奇偶性
(1)f(x)=x+
1
x
;
(2)f(x)=x4+x2+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案