【題目】在平面直角坐標(biāo)系xOy中,C為直線y=5上的動點(diǎn),以C為圓心的圓C截y軸所得的弦長恒為6,過原點(diǎn)O作圓C的一條切線,切點(diǎn)為P,則點(diǎn)P到直線3x+4y﹣25=0的距離的最小值為_____.
【答案】1
【解析】
先根據(jù)弦長確定圓C的半徑的關(guān)系式,結(jié)合切點(diǎn)的性質(zhì),確定P的軌跡,結(jié)合軌跡特點(diǎn)求出最值.
根據(jù)題意,設(shè)C的坐標(biāo)為(m,5),圓C的半徑為r,
又由圓C截y軸所得的弦長恒為6,則點(diǎn)(0,2)在圓C上,則r2=m2+9,
又由過原點(diǎn)O作圓C的一條切線,切點(diǎn)為P,則|CP|2=r2=m2+9,
|OC|2=m2+25,則|OP|2=|OC|2﹣|CP|2=(m2+25)﹣(m2+9)=16,
則P在以O(shè)為圓心,半徑為4的圓上,其圓心O到直線3x+4y﹣25=0的距離d==5,則P到直線3x+4y﹣25=0的距離的最小值為d﹣r=5﹣4=1,
故答案為:1
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過兩點(diǎn),的直線的距離為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
當(dāng)時,證明:函數(shù)不是奇函數(shù);
若函數(shù)是奇函數(shù),求的值;
在的條件下,解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中盈不足章中有這樣一則故事:“今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.” 為了計(jì)算每天良馬和駑馬所走的路程之和,設(shè)計(jì)框圖如下圖. 若輸出的 的值為 360,則判斷框中可以填( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且,函數(shù)在點(diǎn)處的切線過點(diǎn) .
(1) 求滿足的關(guān)系式,并討論函數(shù)的單調(diào)區(qū)間;
(2)已知,若函數(shù)在 上有且只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為x軸,拋物線C過點(diǎn)A(4,4),過拋物線C的焦點(diǎn)F作傾斜角等于45°的直線l,直線l交拋物線C于M、N兩點(diǎn).
(1)求拋物線C的方程;
(2)求線段MN的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像經(jīng)過點(diǎn),且的相鄰兩個零點(diǎn)的距離為,為得到的圖像,可將圖像上所有點(diǎn)( )
A.先向右平移個單位,再將所得圖像上所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變
B.先向左平移個單位,再將所得圖像上所有點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變
C.先向左平移個單位,再將所得圖像上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變
D.先向右平移個單位,再將所得圖像上所有點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐 P - ABCD 中,銳角三角形 PAD 所在平面垂直于平面 PAB,AB⊥AD,AB⊥BC。
(1) 求證:BC∥平面 PAD;
(2) 平面 PAD⊥ 平面 ABCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
(1)求在區(qū)間上的值域;
(2)求在區(qū)間上的值域:
(3)已知,若對于任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com