分析:先通過解方程得函數(shù)f(x)的解析式,由f(x1)+f(x2)=1,代入解析式并化簡后得lnx1lnx2=ln(x1•x2)+3,利用均值定理即可求得ln(x1•x2)的取值范圍,最后將x1•x2代入解析式得f(x1x2),利用函數(shù)單調(diào)性即可得其范圍
解答:解:∵
lnx=,∴l(xiāng)nx-lnx•f(x)-1-f(x)=0∴f(x)=
∵f(x
1)+f(x
2)=1,
∴
+
=
(lnx 1-1)(lnx2+1)+(lnx1+1)(lnx2-1) |
(lnx 1+1)(ln x2+1) |
=
2lnx1lnx2-2 |
(lnx1+1)(ln x2+1) |
=1
∴l(xiāng)nx
1lnx
2=ln(x
1•x
2)+3
∵x
1,x
2均大于e
∴l(xiāng)nx
1,lnx
2均大于1
∴l(xiāng)nx
1lnx
2=ln(x
1•x
2)+3≤
()2=
∴l(xiāng)n
2(x
1•x
2)-4ln(x
1•x
2)-12≥0
∴l(xiāng)n(x
1•x
2)≤-2(舍去)或ln(x
1•x
2)≥6
∴l(xiāng)n(x
1•x
2)≥6
∵f(x
1x
2)=
=1-
≥1-
=
(當(dāng)且僅當(dāng)
即x
1=x
2=e
3時(shí)取等號(hào))
故答案為
點(diǎn)評(píng):本題考查了求函數(shù)解析式的方法,對(duì)數(shù)運(yùn)算及對(duì)數(shù)變換技巧,利用均值定理及函數(shù)性質(zhì)求最值的方法