在極坐標系中,圓C:ρ2+k2cosρ+ρsinθ-k=0關于直線l:θ=(ρ∈R)對稱的充要條件是( )
A.k=1
B.k=-1
C.k=±1
D.k=0
【答案】分析:先利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得直線與圓的直角坐標方程.再在直角坐標系中算出對稱的充要條件即可.
解答:解:圓C的直角坐標方程是x2+y2+k2x+y-k=0,直線l的直角坐標方程是y=x.
若圓C關于直線l對稱,則圓心在直線y=x上,
所以,即k=±1.
又k4+4k+1>0,所以k=1,
故選A.
點評:本題考查點的極坐標和直角坐標的互化、圓的方程及圓的幾何性質(zhì),體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
C.選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設a,b,c均為正實數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-4坐標系與參數(shù)方程)在極坐標系中,圓C的圓心C(3,
π6
)
,半徑r=6.
(1)寫出圓C的極坐標方程;
(2)若Q點在圓C上運動,P在OQ的延長線上,且OQ:QP=3:2,求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鹽城一模)在極坐標系中,圓C的方程為ρ=4
2
cos(θ-
π
4
)
,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t+1
y=t-1
(t為參數(shù)),求直線l被⊙C截得的弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•商丘三模)選修4-4:坐標系與參數(shù)方程
在極坐標系中,圓C的方程為ρ=2
2
sin(θ+
π
4
),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)).
(Ⅰ)求直線l和圓C的直角坐標方程;
(Ⅱ)判斷直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•深圳二模)在極坐標系中,圓C的極坐標方程是ρ=4cos(θ+
π
6
)
.現(xiàn)以極點為原點,以極軸為x軸的正半軸建立直角坐標系,則圓C的半徑是
2
2
,圓心的直角坐標是
3
,-1)
3
,-1)

查看答案和解析>>

同步練習冊答案