(2008•深圳二模)在極坐標系中,圓C的極坐標方程是ρ=4cos(θ+
π
6
)
.現(xiàn)以極點為原點,以極軸為x軸的正半軸建立直角坐標系,則圓C的半徑是
2
2
,圓心的直角坐標是
3
,-1)
3
,-1)
分析:將極坐標方程為ρ=4cos(θ+
π
6
)
,先利用三角函數(shù)的和角公式展開,再化為一般方程,然后再判斷圓C的半徑和圓心坐標.
解答:解:∵圓的極坐標方程為ρ=4cos(θ+
π
6
)
,即ρ=2
3
cosθ-2sinθ
,
∴x=pcosθ,y=psinθ,消去p和θ得,
∴(x-
3
2+(y+1)2=4,
∴圓心的直角坐標是(
3
,-1),半徑長為2.
故答案為:2;(
3
,-1).
點評:本題主要考查圓的極坐標方程、參數(shù)方程與普通方程的互化,點到直線的距離公式.要求學(xué)生能在極坐標系中用極坐標刻畫點的位置,體會在極坐標系和平面直角坐標系中刻畫點的位置的區(qū)別,能進行極坐標和直角坐標的互化.屬于中等題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•深圳二模)一個質(zhì)點從A出發(fā)依次沿圖中線段到達B、C、D、E、F、G、H、I、J各點,最后又回到A(如圖所示),其中:AB⊥BC,AB∥CD∥EF∥HG∥IJ,BC∥DE∥FG∥HI∥JA.欲知此質(zhì)點所走路程,至少需要測量n條線段的長度,則n=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•深圳二模)在△ABC中,A=
π
4
,cosB=
10
10

(1)求cosC;
(2)設(shè)BC=
5
,求
CA
CB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•深圳二模)當(dāng)點M(x,y)在如圖所示的三角形ABC內(nèi)(含邊界)運動時,目標函數(shù)z=kx+y取得最大值的一個最優(yōu)解為(1,2),則實數(shù)k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•深圳二模)已知數(shù)列{an}滿足a1=a,an+1=
(4n+6)an+4n+10
2n+1
(n∈N*)

(Ⅰ)試判斷數(shù)列{
an+2
2n+1
}
是否為等比數(shù)列?若不是,請說明理由;若是,試求出通項an
(Ⅱ)如果a=1時,數(shù)列{an}的前n項和為Sn.試求出Sn,并證明
1
S3
+
1
S4
+…+
1
Sn
1
10
(n≥3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•深圳二模)如圖所示的算法中,令a=tanθ,b=sinθ,c=cosθ,若在集合{θ| -
π
4
<θ<
4
,  θ≠0,  θ≠
π
4
, θ≠
π
2
}
中,給θ取一個值,輸出的結(jié)果是sinθ,則θ值所在范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案