分析 首先根據(jù)函數(shù)的最值和對稱軸之間的距離確定A和ω,進(jìn)一步求出正弦型函數(shù)的解析式.
(1)根據(jù)正弦函數(shù)圖象性質(zhì)求得函數(shù)f(x)對稱中心的坐標(biāo);
(2)根據(jù)正弦函數(shù)圖象的性質(zhì)求值域.
解答 解:因為A>0,所以f(x)max=A+1=3,
所以A=2,
又因為f(x)圖象的相鄰兩條對稱軸之間的距離為$\frac{π}{2}$,
所以$\frac{T}{2}$=$\frac{π}{2}$,
所以T=π,
故ω=$\frac{2π}{π}$=2,
所以f(x)=2sin(2x-$\frac{π}{6}$)+1.
(1)令2x-$\frac{π}{6}$=kπ(k∈Z),
所以x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈Z),
故對稱中心為($\frac{π}{12}$+$\frac{kπ}{2}$,1)(k∈Z);
(2)∵x∈[0,$\frac{π}{2}$],
∴2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴sin(2x-$\frac{π}{6}$)∈[$-\frac{1}{2}$,1],
∴f(x)=2sin(2x-$\frac{π}{6}$)+1∈[0,3]
所以函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域為:[0,3].
點評 本題考查的知識要點:函數(shù)的最值即對稱軸之間的距離再求正弦型函數(shù)解析式中的應(yīng)用,利用解析式求函數(shù)的對稱中心和單調(diào)區(qū)間.屬于基礎(chǔ)題型.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 13 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1” | |
B. | 若“p或q”為假命題,則“p且q”為真命題 | |
C. | 命題“存在x0∈R,使得x${\;}_{0}^{2}$+x0+1<0”的否定是:“對任意x∈R,均有x2+x+1<0” | |
D. | 命題“在△ABC中,若A>B,則sinA>sinB”的逆否命題為真命題 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com