分析 由0<θ<π,且sinθ+cosθ=-$\frac{1}{5}$①,判斷θ∈($\frac{π}{2}$,π),即cosθ<0,利用同角三角函數(shù)的基本關系sin2θ+cos2θ=1②,聯(lián)立①②,求得sinθ和cosθ的值,可得tanθ的值.
解答 解:由0<θ<π,且sinθ+cosθ=-$\frac{1}{5}$①,說明sinθ和cosθ中至少有一個是負數(shù),
如果θ∈(0,$\frac{π}{2}$),sinθ>0而且cosθ>0,可得sinθ+cosθ>0,與題意不符,舍去,
因此θ∈($\frac{π}{2}$,π),即θ是第二象限角,∴cosθ<0,
由sin2θ+cos2θ=1②,
聯(lián)立①②,可得:$(-\frac{1}{5}-cosθ)^{2}+co{s}^{2}θ=1$,化簡整理得25cos2θ+5cosθ-12=0,
解得:$cosθ=\frac{3}{5}$(舍去)或$cosθ=-\frac{4}{5}$,
∴$sinθ=\sqrt{1-co{s}^{2}θ}=\frac{3}{5}$.
∴tanθ=$\frac{sinθ}{cosθ}=-\frac{3}{4}$.
點評 本題主要考查同角三角函數(shù)的基本關系,以及三角函數(shù)在各個象限中的符號,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2) | B. | (0,1) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 16個 | B. | 12個 | C. | 9個 | D. | 8個 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com