4.設(shè)$\overrightarrow a•\overrightarrow b=4\sqrt{3}$,若$\overrightarrow a$在$\overrightarrow b$方向上投影為$2\sqrt{3}$,$\overrightarrow b$在$\overrightarrow a$方向上的投影為$\sqrt{3}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{6}$.

分析 運(yùn)用向量的投影定義,可得|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,再由cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$,計(jì)算即可得到所求夾角.

解答 解:$\overrightarrow a•\overrightarrow b=4\sqrt{3}$,
若$\overrightarrow a$在$\overrightarrow b$方向上投影為$2\sqrt{3}$,$\overrightarrow b$在$\overrightarrow a$方向上的投影為$\sqrt{3}$,
可得$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=2$\sqrt{3}$,$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|}$=$\sqrt{3}$,
即有|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,
則cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{4\sqrt{3}}{4×2}$=$\frac{\sqrt{3}}{2}$,
由0≤<$\overrightarrow{a}$,$\overrightarrow$>≤π,
可得$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{6}$.
故答案為:$\frac{π}{6}$.

點(diǎn)評 本題考查向量的夾角的求法,注意運(yùn)用向量的投影概念和向量數(shù)量積的夾角公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)y=sin(ωx+φ)(ω>0,0<φ≤$\frac{π}{2}$)的部分圖象如圖所示,則cos(5ωφ)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,5),C(0,3).
(1)求BC邊上的高所在直線的方程;
(2)求BC邊上的中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn表示數(shù)列{an}的前n項(xiàng)的和,且$2{S_n}=a_n^2+{a_n}$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.雙曲線$\frac{y^2}{64}-\frac{x^2}{36}=1$上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離等于3,那么點(diǎn)P與兩個(gè)焦點(diǎn)所構(gòu)成的三角形的周長等于42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一組數(shù)x,y,4,5,6的均值是5,方差是2,則xy=( 。
A.25B.24C.21D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知0<θ<π,且sinθ+cosθ=-$\frac{1}{5}$,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a,t為正實(shí)數(shù),函數(shù)f(x)=x2-2x+a,且對任意的x∈[0,t]都有f(x)∈[-a,a].若對每一個(gè)正實(shí)數(shù)a,記t的最大值為g(a),則$g(1)+g(\frac{3}{8})$=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓(x+1)2+(y-2)2=1上一點(diǎn)P到直線4x-3y-5=0的距離為d,則d的最小值為( 。
A.1B.2C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

同步練習(xí)冊答案