【題目】某公司準備將1000萬元資金投入到市環(huán)保工程建設中,現(xiàn)有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤(萬元)的概率分布列如下表所示:
且的期望;若投資乙項目一年后可獲得的利潤(萬元)與該項目建設材料的成本有關,在生產的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進行產品的價格調整,兩次調整相互獨立且調整的概率分別為和.若乙項目產品價格一年內調整次數(shù)(次數(shù))與的關系如下表所示:
(1)求的值;
(2)求的分布列;
(3)若,則選擇投資乙項目,求此時的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】正三棱錐V﹣ABC的底面邊長為2,E,F(xiàn),G,H分別是VA,VB,BC,AC的中點,則四邊形EFGH的面積的取值范圍是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x2+1.
(Ⅰ)若曲線y=f(x)在x=1處的切線方程為4x﹣y+b=0,求實數(shù)a和b的值;
(Ⅱ)討論函數(shù)f(x)的單調性;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn),G分別為EB和AB的中點.
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,S是B1D1的中點,E,F(xiàn),G分別是BC,CD和SC的中點.求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調區(qū)間;
(2)若關于的方程有實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面為菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(1)求證:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣1+x﹣2(e為自然對數(shù)的底數(shù)).g(x)=x2﹣ax﹣a+3.若存在實數(shù)x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,則實數(shù)a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com