10.已知菱形ABCD的邊長(zhǎng)為2,∠BAC=60°,則$\overrightarrow{BC}•\overrightarrow{AC}$=2.

分析 根據(jù)菱形的性質(zhì)和向量的數(shù)量積公式計(jì)算即可

解答 解:∵在菱形ABCD中,邊長(zhǎng)為2,∠BAC=60°,
∴AC=BC=2,∠ACB=60°,
∴$\overrightarrow{BC}•\overrightarrow{AC}$=|$\overrightarrow{BC}$|•|$\overrightarrow{AC}$|•cos60°=2×2×$\frac{1}{2}$=2,
故答案為:2.

點(diǎn)評(píng) 本題考查了菱形的性質(zhì)和向量的數(shù)量積公式,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若函數(shù)f(x)的定義域?yàn)镽,滿足對(duì)任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱f(x)為“V形函數(shù)”.若函數(shù)g(x)定義域?yàn)镽,恒大于0,且對(duì)任意x1,x2∈R,恒有l(wèi)g[f(x1+x2)]<lg[f(x1)]+lg[f(x2)],則稱g(x)為“對(duì)數(shù)V形函數(shù)”.
(1)當(dāng)f(x)=x2時(shí),判斷f(x)是否是“V形函數(shù)”并說(shuō)明理由;
(2)當(dāng)時(shí)g(x)=5x+2判斷g(x)是否是“對(duì)數(shù)V形函數(shù)”,并說(shuō)明理由;
(3)若函數(shù)f(x)是“V形函數(shù)”,且滿足對(duì)任意x∈R都有f(x)≥2,問(wèn)f(x)是否是“對(duì)數(shù)V形函數(shù)”?請(qǐng)加以證明,如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若a,b,c分別是角A,B,C的對(duì)邊,若a=b=$\frac{\sqrt{3}}{3}$c,則角A=(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若0<m<n<2,e為自然對(duì)數(shù)的底數(shù),則下列各式中一定成立的是( 。
A.men<nemB.men>nemC.mlnn>nlnmD.mlnn<nlnm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)集合$A=\{x|\frac{1}{4}≤{2^x}≤16\}$,$B=\{x|\frac{2x-3}{x-3}>1\}$,則A∩B=(  )
A.{x|-2≤x<0或3<x≤4}B.{x|-2≤x≤0或3≤x≤4}C.{x|-2<x≤4}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在長(zhǎng)為8cm的線段AB上任取一點(diǎn)C,作一矩形,鄰邊長(zhǎng)分別等于線段AC,CB的長(zhǎng),則該矩形面積小于15cm2的概率為( 。
A.$\frac{8}{15}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=2sinωx+1(ω>0)在區(qū)間[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函數(shù),則ω的取值范圍是( 。
A.(0,$\frac{3}{4}$]B.(0,1]C.[$\frac{3}{4}$,1]D.[$\frac{3}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知集合A={-1,1,2,3},B={x|x∈R,x2<3},則A∩B={-1,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a1=10,S5≥S6,下列四個(gè)命題中,假命題是(  )
A.公差d的最大值為-2B.S7<0
C.記Sn的最大值為K,K的最大值為30D.a2016>a2017

查看答案和解析>>

同步練習(xí)冊(cè)答案