已知lna+lnb=2ln(a-2b),則log2
a
b
的值為
 
考點(diǎn):對數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件利用對數(shù)的運(yùn)算性質(zhì)可得(
a
b
)
2
-4
a
b
+4=0,求得
a
b
的值,可得log2
a
b
的值.
解答: 解:∵lna+lnb=2ln(a-2b),∴l(xiāng)nab=ln(a-2b)2,∴ab=(a-2b)2=a2+4b2-4ab,
(
a
b
)
2
-4
a
b
+4=0,求得
a
b
=2,可得log2
a
b
=log22=1,
故答案為:1.
點(diǎn)評:本題主要考查對數(shù)的運(yùn)算性質(zhì),求得
a
b
=2,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2-x
+log2(x-1)的定義域?yàn)?div id="r2qupkx" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且對任意n∈N*時(shí),點(diǎn)(an,Sn)都在函數(shù)f(x)=-
1
2
x+
1
2
的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
3
2
log3(1-2Sn)+10
,求數(shù)列{bn}的前n項(xiàng)和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α=-4,則cosα與0的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC滿足|BC|=6,|AB|+|AC|=10,則下列命題正確的是
 
(寫出所有正確命題的編號(hào)).
①點(diǎn)A的軌跡是橢圓;
②△ABC可以是以∠A為直角的直角三角形;
③△ABC面積的最大值為12;
④△ABC外接圓半徑存在最小值,且為
25
8
;
⑤△ABC內(nèi)切圓半徑存在最大值,且為
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)經(jīng)過選拔的三名學(xué)生甲、乙、丙參加某大學(xué)自主招生考核測試,在本次考核中只有不優(yōu)秀和優(yōu)秀兩個(gè)等次,若考核為不優(yōu)秀,則授予0分加分資格;若考核優(yōu)秀,授予20分加分資格.假設(shè)甲、乙、丙考核為優(yōu)秀的概率分別為
2
3
、
2
3
1
2
,他們考核所得的等次相互獨(dú)立.
(1)求在這次考核中,甲、乙、丙三名同學(xué)中至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名同學(xué)所得加分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=cos(sinx)與g(x)=sin(cosx),以下結(jié)論錯(cuò)誤的是( 。
A、f(x)與g(x)都是偶函數(shù)
B、f(x)與g(x)都是周期函數(shù)
C、f(x)與g(x)的定義域都是[-1,1]
D、f(x)的值域是[cos1,1],g(x)的值域是[-sin1,sin1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程
?
y
=0.68
?
x
+54.6
,利用下表中數(shù)據(jù)推斷a的值為( 。
零件數(shù)x(個(gè))1020304050
加工時(shí)間y(min)62a758189
A、68.2B、68
C、69D、67

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,異面直線BC1和CD1所成角為( 。
A、
π
6
B、
π
3
C、
π
4
D、
π
2

查看答案和解析>>

同步練習(xí)冊答案