某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱系統(tǒng))A和B,系統(tǒng)A和B在任意時(shí)刻發(fā)生故障的概率分別為和p.
(Ⅰ)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為,求p的值;
(Ⅱ)設(shè)系統(tǒng)A在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)為隨機(jī)變量ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.
【答案】分析:(Ⅰ)求出“至少有一個(gè)系統(tǒng)不發(fā)生故障”的對(duì)立事件的概率,利用至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為,可求p的值;
(Ⅱ)ξ的所有可能取值為0,1,2,3,求出相應(yīng)的概率,可得ξ的分布列與數(shù)學(xué)期望.
解答:解:(Ⅰ)設(shè)“至少有一個(gè)系統(tǒng)不發(fā)生故障”為事件C,則
;
(Ⅱ)ξ的可能取值為0,1,2,3
P(ξ=0)=;P(ξ=1)=;
P(ξ=2)==;P(ξ=3)=
∴ξ的分布列為
 ξ 0 1 2 3
 P    
數(shù)學(xué)期望Eξ=0×+1×+2×+3×=
點(diǎn)評(píng):本題考查概率知識(shí)的求解,考查離散型隨機(jī)變量的分布列與期望,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•四川)某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱系統(tǒng))A和B,系統(tǒng)A和B在任意時(shí)刻發(fā)生故障的概率分別為
1
10
和p.
(Ⅰ)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為
49
50
,求p的值;
(Ⅱ)設(shè)系統(tǒng)A在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)為隨機(jī)變量ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•四川)某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱系統(tǒng))A和B,系統(tǒng)A和系統(tǒng)B在任意時(shí)刻發(fā)生故障的概率分別為
1
10
和p.
(Ⅰ)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為
49
50
,求p的值;
(Ⅱ)求系統(tǒng)A在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)大于發(fā)生故障的次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012四川理)某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱系統(tǒng)),系統(tǒng)在任意時(shí)刻發(fā)生故障的概率分別為.

(Ⅰ)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為,求的值;

(Ⅱ)設(shè)系統(tǒng)在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)為隨機(jī)變量,求的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷解析版) 題型:解答題

(本小題滿分12分) 某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱系統(tǒng)),系統(tǒng)在任意時(shí)刻發(fā)生故障的概率分別為

(Ⅰ)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為,求的值;

(Ⅱ)設(shè)系統(tǒng)在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)為隨機(jī)變量,求的概率分布列及數(shù)學(xué)期望。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(四川卷解析版) 題型:解答題

(本小題滿分12分) 某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱系統(tǒng)),系統(tǒng)和系統(tǒng)在任意時(shí)刻發(fā)生故障的概率分別為。

(Ⅰ)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為,求的值;

(Ⅱ)求系統(tǒng)在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)大于發(fā)生故障的次數(shù)的概率。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案