(本小題滿分14分)如圖,正方體的棱長為2EAB的中點.(Ⅰ)求證:(Ⅱ)求異面直線BD1CE所成角的余弦值;(Ⅲ)求點B到平面的距離.

(Ⅰ)  見解析  (Ⅱ)   (Ⅲ)


解析:

法一:(1)連接BD,由已知有   

  得…………1分

又由ABCD是正方形,得:……2分      ∵相交,∴……3分

(2)延長DC至G,使CG=EB,,連結(jié)BG、D1G ,∵CG∥EB ,∴四邊形EBGC是平行四邊形.                                 

∴BG∥EC.   ∴就是異面直線BD1與CE所成角…………………………5分

中,    …………………6分

 

異面直線 CE所成角的余弦值是 ………8分

(3)∵       又∵     ∴ 點E到的距離,有:    ,…………11分

 又由  ,  設(shè)點B到平面的距離為

 , 有,, 所以點B到平面的距離為…14分

解法二:(1)見解法一…3分

(2)以D為原點,DA、DC、軸建立空間直角坐標(biāo)系,則有B(2,2,0)、(0,0,2)、E(2,1,0)、C(0,2,0)、(2,0,2)∴(-2,-2,2),(2,-1,0)………5分

……7分即余弦值是   8分

(3)設(shè)平面的法向量為, 有:,,…8分

由:(0,1,-2),(2,-1,0)………9分

可得:,令,得  ………11分

(0,1,0)有:點B到平面的距離為…14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案