6.根據(jù)下面的要求,求S=1+2+┅+100值.
(Ⅰ)請(qǐng)將程序框圖補(bǔ)充完整;
(Ⅱ)求出(1)中輸出S的值.

分析 (Ⅰ)分析題目中的要求,發(fā)現(xiàn)這是一個(gè)累加型的問(wèn)題,可用循環(huán)結(jié)構(gòu)來(lái)實(shí)現(xiàn),在編寫(xiě)算法的過(guò)程中要注意,累加的初始值為0,累加值每一次增加1,退出循環(huán)的條件是i>100,把握住以上要點(diǎn)不難得到答案;
(Ⅱ)利用等差數(shù)列的求和公式即可得解.

解答 解:(Ⅰ)S=S+i________(3分)
i>100?-----(6分)
(Ⅱ)S=1+2+┅+100=$\frac{(1+100)×100}{2}=5050$----(12分)

點(diǎn)評(píng) 本題考查了程序框圖,可利用循環(huán)語(yǔ)句來(lái)實(shí)現(xiàn)數(shù)值的累加(乘)常分如下步驟:①觀察S的表達(dá)式分析,循環(huán)的初值、終值、步長(zhǎng)②觀察每次累加的值的通項(xiàng)公式③在循環(huán)前給累加器和循環(huán)變量賦初值,累加器的初值為0,累乘器的初值為1,環(huán)變量的初值同累加(乘)第一項(xiàng)的相關(guān)初值④在循環(huán)體中要先計(jì)算累加(乘)值,如果累加(乘)值比較簡(jiǎn)單可以省略此步,累加(乘),給循環(huán)變量加步長(zhǎng)⑤輸出累加(乘)值.本題屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知圓C:(x-1)2+(y-1)2=1和點(diǎn)M(2,3).
(1)過(guò)點(diǎn)M向圓C引切線l,求直線l的方程;
(2)求以點(diǎn)M為圓心,且被直線y=2x+4截得的弦長(zhǎng)為4的圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)命題p:$\left\{\begin{array}{l}{2x+y-2≥0}\\{x+3y-6≤0}\\{x-k≤0}\end{array}\right.$(x,y,k∈R,且k>0);命題q:(x-1)2+y2≤5(x,y∈R).若p是q的充分不必要條件為真命題,則k的取值范圍是(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列程序,若輸出的y的值是150,則輸入的x的值是( 。
A.15B.20C.150D.200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列有關(guān)命題的敘述,錯(cuò)誤的個(gè)數(shù)為( 。
①若p∨q為真命題,則p∧q為真命題.
②“x>5”是“x2-4x-5>0”的充分不必要條件.
③命題P:?x∈R,使得x2+x-1<0,則¬p:?x∈R,使得x2+x-1≥0.
④命題“若x2-3x+2=0,則x=1”的否命題為假命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=$\frac{m}{x}$,g(x)=$\frac{{x}^{2}+m}{x}$,且對(duì)任意x1>x2≥2,都有f(x1)-f(x2)>x2-x1
(1)判斷g(x)在(2,+∞)上的單調(diào)性;
(2)設(shè)集合A={x|f(x)=2,x>2},證明:A=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,S2n=2an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2an,求b1+b3+b5+…+b2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.計(jì)算下列各式:
(1)($\frac{16}{81}$)${\;}^{-\frac{3}{4}}}$-($\sqrt{3}$-$\sqrt{2}$)0-(1$\frac{9}{16}$)${\;}^{\frac{1}{2}}}$;
(2)log98log29-(lg$\frac{5}{2}$+2lg2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,雙曲線經(jīng)過(guò)正六邊形的四個(gè)頂點(diǎn),且正六邊形的另兩個(gè)頂點(diǎn)A、B分別雙曲線的兩個(gè)焦點(diǎn),則該雙曲線的離心率為$\sqrt{3}+1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案