已知直線,交于一點,則的值為       .

 

【答案】

【解析】

試題分析:直線的交點即聯(lián)立方程組的解,解方程組得交點為

代入直線

考點:直線相交的交點

點評:直線的交點即直線方程構(gòu)成方程組的解,三直線交于一點即三直線方程聯(lián)立后只有一解

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
3

(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當(dāng)點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點?請證明你的結(jié)論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標(biāo)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線(1+4k)x-(2-3k)y+(2+8k)=0(k∈R)所經(jīng)過的定點F,直線l:x=-4與x軸的交點是圓C的圓心,圓C恰好經(jīng)過坐標(biāo)原點O,設(shè)G是圓C上任意一點.
(1)求點F和圓C的方程;
(2)若直線FG與直線l交于點T,且G為線段FT的中點,求直線FG被圓C所截得的弦長;
(3)在平面上是否存在一點P,使得
GF
GP
=
1
2
?若存在,求出點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:①過平面外一點有無數(shù)條直線與這個平面平行;
②過直線外一點可以作無數(shù)個平面與已知直線平行;
③如果一個平面內(nèi)有兩條直線分別平行于另一個平面,那么這兩個平面平行;
④如果兩個平面同時和第三個平面相交,則它們的交線平行.   其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A:(選修4-1)已知:⊙O和在⊙O外的一點P,過P的直線交⊙O于A、B兩點,若PA•PB=24,OP=5,則⊙O的半徑長為
1
1

B:(選修4-4)在極坐標(biāo)系中,以(
a
2
,
π
2
)
為圓心,
a
2
為半徑的圓的極坐標(biāo)方程是
ρ=asinθ
ρ=asinθ

查看答案和解析>>

同步練習(xí)冊答案