【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中, ,將其沿折起使得與重合,連結(jié),如圖2.
(1)證明圖2中的四點(diǎn)共面,且平面平面;
(2)求圖2中的四邊形的面積.
【答案】(1)見詳解;(2)4.
【解析】
(1)因?yàn)檎奂埡驼澈喜桓淖兙匦?/span>,和菱形內(nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因?yàn)?/span>是平面垂線,所以易證.(2) 欲求四邊形的面積,需求出所對(duì)應(yīng)的高,然后乘以即可。
(1)證:,,又因?yàn)?/span>和粘在一起.
,A,C,G,D四點(diǎn)共面.
又.
平面BCGE,平面ABC,平面ABC平面BCGE,得證.
(2)取的中點(diǎn),連結(jié).因?yàn)?/span>,平面BCGE,所以平面BCGE,故,
由已知,四邊形BCGE是菱形,且得,故平面DEM。
因此。
在中,DE=1,,故。
所以四邊形ACGD的面積為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三棱錐的底面是正三角形,側(cè)棱長(zhǎng)均相等,是棱上的點(diǎn)(不含端點(diǎn)),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為實(shí)常數(shù)).
(1)當(dāng)時(shí),作出的圖象,并寫出它的單調(diào)遞增區(qū)間;
(2)設(shè)在區(qū)間的最小值為,求的表達(dá)式;
(3)已知函數(shù)在的情況下:其在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某制造商3月生產(chǎn)了一批乒乓球,從中隨機(jī)抽樣100個(gè)進(jìn)行檢查,測(cè)得每個(gè)球的直徑(單位:mm),將數(shù)據(jù)分組如下:
分組 | 頻數(shù) | 頻率 |
[39.95,39.97) | 10 | |
[39. 97,39.99) | 20 | |
[39.99,40.01) | 50 | |
[40.01,40.03] | 20 | |
合計(jì) | 100 |
(Ⅰ)請(qǐng)?jiān)谏媳碇醒a(bǔ)充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在圖中畫出頻率分布直方圖;
(Ⅱ)若以上述頻率作為概率,已知標(biāo)準(zhǔn)乒乓球的直徑為40.00 mm,試求這批球的直徑誤差不超過0.03 mm的概率;
(Ⅲ)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)經(jīng)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間[39.99,40.01)的中點(diǎn)值是40.00作為代表.據(jù)此估計(jì)這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在平面與半圓弧所在平面垂直,是上異于,的點(diǎn).
(1)證明:平面平面;
(2)在線段上是否存在點(diǎn),使得平面?說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com