【題目】2015年一交警統(tǒng)計了某路段過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達到110時,可能發(fā)生的交通事故次數(shù).

(附:,,其中為樣本平均值)

【答案】(1)散點圖見解析.

(2).

(3)14.

【解析】分析:(1)直接利用表格中數(shù)據(jù)描點作圖即可;(2)由最小二乘法確定回歸方程的系數(shù)為,從而可得線性回歸方程;(3)由線性回歸方程,知當時,.

詳解(1)散點圖如圖所示:

(2)由已知可得

所以由最小二乘法確定的回歸方程的系數(shù)為

因此所求的線性回歸方程為

(3)由線性回歸方程,知當時,

所以在2016年該路段路況及安全設(shè)施等不變的情況下,車速達到110km/h時,可能發(fā)生的交通事故次數(shù)為14.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) , ,其中
(1)當 時,求函數(shù) 的單調(diào)遞減區(qū)間;
(2)若對任意的 , 為自然對數(shù)的底數(shù))都有 成立,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)

如圖,在四棱錐PABCD中,側(cè)面PAD底面ABCD,側(cè)棱PAPD=,底面ABCD為直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2OAD中點.

(Ⅰ)求證:PO平面ABCD;

(Ⅱ)求異面直線PBCD所成角的余弦值;

(Ⅲ)求點A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游愛好者計劃從3個亞洲國家 和3個歐洲國家 中選擇2個國家去旅游.
(Ⅰ)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(Ⅱ)若從亞洲國家和歐洲國家中各任選1個,求這2個國家包括 但不包括 的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足 ,它的前項和為,且

(Ⅰ)求;

(Ⅱ)已知等比數(shù)列滿足, ,設(shè)數(shù)列的前項和為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學從高三男生中隨機抽取100名學生,將他們的身高數(shù)據(jù)進行整理,得到下側(cè)的頻率分布表.

組號

分組

頻率

1

[160,165)

0.05

2

0.35

3

0.3

4

0.2

5

0.1

合計

1.00

Ⅰ)為了能對學生的體能做進一步了解,該校決定在第3,4,5組中用分層抽樣的方法抽取6名學生進行體能測試,問第3,4,5組每組各應(yīng)抽取多少名學生進行測試;

Ⅱ)在(Ⅰ)的前提下,學校決定在6名學生中隨機抽取2名學生進行引體向上測試,求第3組中至少有一名學生被抽中的概率;

試估計該中學高三年級男生身高的中位數(shù)位于第幾組中,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 的方程為 ,直線 的方程為 ,點 在直線 上,過點 作圓 的切線 ,切點為 .
(1)若點 的坐標為 ,求切線 的方程;
(2)求四邊形 面積的最小值;
(3)求證:經(jīng)過 三點的圓必過定點,并求出所有定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為調(diào)查高一、高二學生周日在家學習用時情況,隨機抽取了高一、高二各人,對他們的學習時間進行了統(tǒng)計,分別得到了高一學生學習時間(單位:小時)的頻數(shù)分布表和高二學生學習時間的頻率分布直方圖.

高一學生學習時間的頻數(shù)分布表(學習時間均在區(qū)間內(nèi)):

學習時間

頻數(shù)

3

1

8

4

2

2

高二學生學習時間的頻率分布直方圖:

(1)求高二學生學習時間的頻率分布直方圖中的,并根據(jù)此頻率分布直方圖估計該校高二學生學習時間的中位數(shù);

(2)利用分層抽樣的方法,從高一學生學習時間在,的兩組里隨機抽取再從這人中隨機抽取,求學習時間在這一組中至少有人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,點在直線上.數(shù)列滿足

,,且其前9項和為153.

)求數(shù)列的通項公式;

)設(shè),數(shù)列的前項和為,求使不等式對一切都成立的最大正整數(shù)的值.

查看答案和解析>>

同步練習冊答案