分析 根據(jù)拋物線的焦點(diǎn)坐標(biāo)可得$\frac{p}{2}$=1,解得p;由拋物線的定義,將|MA|+|MF|轉(zhuǎn)化成|MA|+|PM|.由平面幾何知識(shí),可得當(dāng)P、A、M三點(diǎn)共線時(shí),|MA|+|PM|有最小值.由此即可得到|MA|+|MF|取得最小值,進(jìn)而得到相應(yīng)的點(diǎn)M的坐標(biāo).
解答 解:拋物線C:y2=2px(p>0)的焦點(diǎn)為F(1,0),
可得$\frac{p}{2}$=1,即p=2;
由題意y2=4x得F(1,0),準(zhǔn)線方程為 x=-1,
點(diǎn)A(4,3),設(shè)點(diǎn)M到準(zhǔn)線的距離為d=|PM|,
則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,
故當(dāng)P、A、M三點(diǎn)共線時(shí),
|MF|+|MA|取得最小值為|AP|=4-(-1)=5,
再將y=3代入拋物線y2=4x 得x=$\frac{9}{4}$,
故點(diǎn)M的坐標(biāo)是:($\frac{9}{4}$,3).
故答案為:2,5.
點(diǎn)評(píng) 本題考查拋物線的定義和性質(zhì)的應(yīng)用,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,解答的關(guān)鍵利用是拋物線定義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{6}}}{6}$ | B. | $-\frac{{\sqrt{2}}}{3}$ | C. | $-\sqrt{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {λan}(λ為常數(shù)) | B. | {an+bn} | C. | {an2-bn2} | D. | {{an•bn}} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 5 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}π}{3}$ | B. | $\frac{2\sqrt{3}π}{3}$ | C. | $\frac{\sqrt{6}π}{3}$ | D. | $\frac{2\sqrt{6}π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a)>f(b)>f(c) | B. | f(a)>f(c)>f(b) | C. | f(c)>f(a)>f(b) | D. | f(c)>f(b)>f(a) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com